-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathfashion-mnist-save_model.py
108 lines (83 loc) · 3.76 KB
/
fashion-mnist-save_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#!/usr/bin/env python
# coding: utf-8
# In[2]:
import tensorflow as tf
import os
import argparse
from tensorflow.python.keras.callbacks import Callback
class MyFashionMnist(object):
def train(self):
parser = argparse.ArgumentParser()
parser.add_argument('--learning_rate', required=False, type=float, default=0.001)
parser.add_argument('--dropout_rate', required=False, type=float, default=0.3)
parser.add_argument('--opt', required=False, type=int, default=1)
parser.add_argument('--checkpoint_dir', required=False, default='/reuslt/training_checkpoints')
parser.add_argument('--saved_model_dir', required=False, default='/result/saved_model')
parser.add_argument('--tensorboard_log', required=False, default='/result/log')
args = parser.parse_args()
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.fashion_mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.023
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(args.dropout_rate),
tf.keras.layers.Dense(10, activation='softmax')
])
model.summary()
sgd = tf.keras.optimizers.SGD(lr=args.learning_rate)
adam = tf.keras.optimizers.Adam(lr=args.learning_rate)
optimizers= [sgd, adam]
model.compile(optimizer=optimizers[args.opt],
loss='sparse_categorical_crossentropy',
metrics=['acc'])
# 체크포인트를 저장할 체크포인트 디렉터리를 지정합니다.
checkpoint_dir = args.checkpoint_dir
# 체크포인트 파일의 이름
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt_{epoch}")
model.fit(x_train, y_train,
verbose=0,
validation_data=(x_test, y_test),
epochs=5,
callbacks=[KatibMetricLog(),
tf.keras.callbacks.TensorBoard(log_dir=args.tensorboard_log),
tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_prefix,
save_weights_only=True)
])
path = args.saved_model_dir
model.save(path, save_format='tf')
class KatibMetricLog(Callback):
def on_batch_end(self, batch, logs={}):
print("batch=" + str(batch),
"accuracy=" + str(logs.get('acc')),
"loss=" + str(logs.get('loss')))
def on_epoch_begin(self, epoch, logs={}):
print("epoch " + str(epoch) + ":")
def on_epoch_end(self, epoch, logs={}):
print("Validation-accuracy=" + str(logs.get('val_acc')),
"Validation-loss=" + str(logs.get('val_loss')))
return
if __name__ == '__main__':
if os.getenv('FAIRING_RUNTIME', None) is None:
from kubeflow import fairing
from kubeflow.fairing.kubernetes import utils as k8s_utils
DOCKER_REGISTRY = 'kubeflow-registry.default.svc.cluster.local:30000'
fairing.config.set_builder(
'append',
image_name='fairing-job',
base_image='brightfly/kubeflow-jupyter-lab:tf2.0-gpu',
registry=DOCKER_REGISTRY,
push=True)
# cpu 2, memory 5GiB
fairing.config.set_deployer('job',
namespace='dudaji',
pod_spec_mutators=[
k8s_utils.mounting_pvc(pvc_name="fashion-mnist",
pvc_mount_path="/result"),
k8s_utils.get_resource_mutator(cpu=2,
memory=5)]
)
fairing.config.run()
else:
remote_train = MyFashionMnist()
remote_train.train()
# In[ ]: