-
Notifications
You must be signed in to change notification settings - Fork 41
/
RingCT2.py
331 lines (296 loc) · 12.4 KB
/
RingCT2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import MiniNero
import MLSAG2
import PaperWallet
import AggregateSchnorr
import Ecdh
import Crypto.Random.random as rand
#set 8 atoms, since python is super slow on my laptop - normally this is 64 (note these range sigs are going pretty fast in the c++ version)
ATOMS = 8
#implementing some types
class ctkey(object):
__slots__ = ['dest', 'mask']
def ctkeyV(rows):
return [ctkey() for i in range(0, rows)]
class ecdhTuple(object):
__slots__ = ['mask', 'amount','senderPk']
class asnlSig(object):
__slots__ = ['L1', 's2','s']
class mgSig(object):
__slots__ = ['ss', 'cc','II']
class rangeSig(object):
__slots__ = ['asig', 'Ci']
class rctSig(object):
__slots__ = ['rangeSigs', 'MG', 'mixRing', 'ecdhInfo','outPk']
def ctskpkGen(amount):
sk = ctkey()
pk = ctkey()
sk.dest, pk.dest = PaperWallet.skpkGen()
sk.mask, pk.mask = PaperWallet.skpkGen()
am = MiniNero.intToHex(amount)
aH = MiniNero.scalarmultKey(getHForCT(), am)
pk.mask = MiniNero.addKeys(pk.mask, aH)
return sk, pk
def getHForCT():
#return "8b655970153799af2aeadc9ff1add0ea6c7251d54154cfa92c173a0dd39c1f94"
A = MiniNero.publicFromInt(1)
H = MiniNero.hashToPointCN(A)
#Translator.hexToC(H)
#print(H)
return H
def getH2ForCT():
A = MiniNero.publicFromInt(1)
HPow2 = MiniNero.hashToPointCN(A)
two = MiniNero.intToHex(2)
H2 = [None] * ATOMS
for i in range(0, ATOMS):
#Translator.hexToCComma(HPow2)
H2[i] = HPow2
HPow2 = MiniNero.scalarmultKey(HPow2, two)
return H2
def d2b(n, digits):
b = [0] * digits
i = 0
while n:
b[i] = n & 1
i = i + 1
n >>= 1
return b
def b2d(binArray):
s = 0
i = 0
for a in binArray:
s = s + a * 2 ** i
i+= 1
return s
def sumCi(Cis):
CSum = MiniNero.identity()
for i in Cis:
CSum = MiniNero.addKeys(CSum, i)
return CSum
#proveRange and verRange
#proveRange gives C, and mask such that \sumCi = C
# c.f. http:#eprint.iacr.org/2015/1098 section 5.1
# and Ci is a commitment to either 0 or 2^i, i=0,...,63
# thus this proves that "amount" is in [0, 2^ATOMS]
# mask is a such that C = aG + bH, and b = amount
#verRange verifies that \sum Ci = C and that each Ci is a commitment to 0 or 2^i
#"prove" returns a rangeSig (list) containing a list [L1, s2, s] and a key64 list [C0, C1, ..., C64] of keys, it also returns C = sum(Ci) and mask, which in the c++ version are returned by reference
#inputs key C, key mask, number amount
#"ver" returns true or false, and inputs a key, and a rangesig list "as"
def proveRange(amount):
bb = d2b(amount, ATOMS) #gives binary form of bb in "digits" binary digits
print("amount, amount in binary", amount, bb)
ai = [None] * len(bb)
Ci = [None] * len(bb)
CiH = [None] * len(bb) #this is like Ci - 2^i H
H2 = getH2ForCT()
a = MiniNero.sc_0()
ii = [None] * len(bb)
indi = [None] * len(bb)
for i in range(0, ATOMS):
ai[i] = PaperWallet.skGen()
a = MiniNero.addScalars(a, ai[i]) #creating the total mask since you have to pass this to receiver...
if bb[i] == 0:
Ci[i] = MiniNero.scalarmultBase(ai[i])
if bb[i] == 1:
Ci[i] = MiniNero.addKeys(MiniNero.scalarmultBase(ai[i]), H2[i])
CiH[i] = MiniNero.subKeys(Ci[i], H2[i])
A = asnlSig()
A.L1, A.s2, A.s = AggregateSchnorr.GenASNL(ai, Ci, CiH, bb)
R = rangeSig()
R.asig = A
R.Ci = Ci
mask = a
C = sumCi(Ci)
return C, mask, R
def verRange(Ci, ags):
n = ATOMS
CiH = [None] * n
H2 = getH2ForCT()
for i in range(0, n):
CiH[i] = MiniNero.subKeys(ags.Ci[i], H2[i])
return AggregateSchnorr.VerASNL(ags.Ci, CiH, ags.asig.L1, ags.asig.s2, ags.asig.s)
#Ring-ct MG sigs
#Prove:
# c.f. http:#eprint.iacr.org/2015/1098 section 4. definition 10.
# This does the MG sig on the "dest" part of the given key matrix, and
# the last row is the sum of input commitments from that column - sum output commitments
# this shows that sum inputs = sum outputs
#Ver:
# verifies the above sig is created corretly
def proveRctMG(pubs, inSk, outSk, outPk, index):
#pubs is a matrix of ctkeys [P, C]
#inSk is the keyvector of [x, mask] secret keys
#outMasks is a keyvector of masks for outputs
#outPk is a list of output ctkeys [P, C]
#index is secret index of where you are signing (integer)
#returns a list (mgsig) [ss, cc, II] where ss is keymatrix, cc is key, II is keyVector of keyimages
#so we are calling MLSAG2.MLSAG_Gen from here, we need a keymatrix made from pubs
#we also need a keyvector made from inSk
rows = len(pubs[0])
cols = len(pubs)
print("rows in mg", rows)
print("cols in mg", cols)
M = MLSAG2.keyMatrix(rows + 1, cols) #just a simple way to initialize a keymatrix, doesn't need to be random..
sk = MLSAG2.keyVector(rows + 1)
for j in range(0, cols):
M[j][rows] = MiniNero.identity()
sk[rows] = MiniNero.sc_0()
for i in range(0, rows):
sk[i] = inSk[i].dest #get the destination part
sk[rows] = MiniNero.sc_add_keys(sk[rows], inSk[i].mask) #add commitment part
for j in range(0, cols):
M[j][i] = pubs[j][i].dest # get the destination part
M[j][rows] = MiniNero.addKeys(M[j][rows], pubs[j][i].mask) #add commitment part
#next need to subtract the commitment part of all outputs..
for j in range(0, len(outSk)):
sk[rows] = MiniNero.sc_sub_keys(sk[rows], outSk[j].mask)
for i in range(0, len(outPk)):
M[j][rows] = MiniNero.subKeys(M[j][rows], outPk[i].mask) # subtract commitment part
MG = mgSig()
MG.II, MG.cc, MG.ss = MLSAG2.MLSAG_Gen(M, sk, index)
return MG #mgSig
def verRctMG(MG, pubs, outPk):
#mg is an mgsig (list [ss, cc, II] of keymatrix ss, keyvector II and key cc]
#pubs is a matrix of ctkeys [P, C]
#outPk is a list of output ctkeys [P, C] for the transaction
#returns true or false
rows = len(pubs[0])
cols = len(pubs)
M = MLSAG2.keyMatrix(rows + 1, cols) #just a simple way to initialize a keymatrix, doesn't need to be random..
for j in range(0, cols):
M[j][rows] = MiniNero.identity()
for i in range(0, rows):
for j in range(0, cols):
M[j][i] = pubs[j][i].dest # get the destination part
M[j][rows] = MiniNero.addKeys(M[j][rows], pubs[j][i].mask) #add commitment part
#next need to subtract the commitment part of all outputs..
for j in range(0, cols):
for i in range(0, len(outPk)):
M[j][rows] = MiniNero.subKeys(M[j][rows], outPk[i].mask) # subtract commitment part
return MLSAG2.MLSAG_Ver(M, MG.II, MG.cc, MG.ss)
#These functions get keys from blockchain
#replace these when connecting blockchain
#getKeyFromBlockchain grabs a key from the blockchain at "reference_index" to mix with
#populateFromBlockchain creates a keymatrix with "mixin" columns and one of the columns is inPk
# the return value are the key matrix, and the index where inPk was put (random).
def getKeyFromBlockchain(reference_index):
#returns a ctkey a (randomly)
rv = ctkey()
rv.dest = PaperWallet.pkGen()
rv.mask = PaperWallet.pkGen()
return rv
def populateFromBlockchain(inPk, mixin):
#returns a ckKeyMatrix with your public input keys at "index" which is the second returned parameter.
#the returned ctkeyMatrix will have number of columns = mixin
rv = [None] * mixin
index = rand.getrandbits(mixin - 1)
blockchainsize = 10000
for j in range(0, mixin):
if j != index:
rv[j] = [getKeyFromBlockchain(rand.getrandbits(blockchainsize)) for i in range(0, len(inPk))]
else:
rv[j] = inPk
return rv, index
#Elliptic Curve Diffie Helman: encodes and decodes the amount b and mask a
# where C= aG + bH
def ecdhEncode(unmasked, receiverPk):
rv = ecdhTuple()
#compute shared secret
esk, rv.senderPk = PaperWallet.skpkGen()
sharedSec1 = MiniNero.cn_fast_hash(MiniNero.scalarmultKey(receiverPk, esk));
sharedSec2 = MiniNero.cn_fast_hash(sharedSec1)
#encode
rv.mask = MiniNero.sc_add_keys(unmasked.mask, sharedSec1)
rv.amount = MiniNero.sc_add_keys(unmasked.amount, sharedSec1)
return rv
def ecdhDecode(masked, receiverSk):
rv = ecdhTuple()
#compute shared secret
sharedSec1 = MiniNero.cn_fast_hash(MiniNero.scalarmultKey(masked.senderPk, receiverSk))
sharedSec2 = MiniNero.cn_fast_hash(sharedSec1)
#encode
rv.mask = MiniNero.sc_sub_keys(masked.mask, sharedSec1)
rv.amount = MiniNero.sc_sub_keys(masked.amount, sharedSec1)
return rv
#RingCT protocol
#genRct:
# creates an rctSig with all data necessary to verify the rangeProofs and that the signer owns one of the
# columns that are claimed as inputs, and that the sum of inputs = sum of outputs.
# Also contains masked "amount" and "mask" so the receiver can see how much they received
#verRct:
# verifies that all signatures (rangeProogs, MG sig, sum inputs = outputs) are correct
#decodeRct: (c.f. http:#eprint.iacr.org/2015/1098 section 5.1.1)
# uses the attached ecdh info to find the amounts represented by each output commitment
# must know the destination private key to find the correct amount, else will return a random number
def genRct(inSk, inPk, destinations, amounts, mixin):
#inputs:
#inSk is signers secret ctkeyvector
#inPk is signers public ctkeyvector
#destinations is a keyvector of output addresses
#amounts is a list of amounts corresponding to above output addresses
#mixin is an integer which is the desired mixin
#outputs:
#rctSig is a list [ rangesigs, MG, mixRing, ecdhInfo, outPk]
#rangesigs is a list of one rangeproof for each output
#MG is the mgsig [ss, cc, II]
#mixRing is a ctkeyMatrix
#ecdhInfo is a list of masks / amounts for each output
#outPk is a vector of ctkeys (since we have computed the commitment for each amount)
rv = rctSig()
rv.outPk = ctkeyV( len(destinations))
rv.rangeSigs = [None] * len(destinations)
outSk = ctkeyV(len(destinations))
rv.ecdhInfo = [None] * len(destinations)
for i in range(0, len(destinations)):
rv.ecdhInfo[i] = ecdhTuple()
rv.outPk[i] = ctkey()
rv.outPk[i].dest = destinations[i]
rv.outPk[i].mask, outSk[i].mask, rv.rangeSigs[i] = proveRange(amounts[i])
#do ecdhinfo encode / decode
rv.ecdhInfo[i].mask = outSk[i].mask
rv.ecdhInfo[i].amount = MiniNero.intToHex(amounts[i])
rv.ecdhInfo[i] = ecdhEncode(rv.ecdhInfo[i], destinations[i])
rv.mixRing, index = populateFromBlockchain(inPk, mixin)
rv.MG = proveRctMG(rv.mixRing, inSk, outSk, rv.outPk, index)
return rv
def verRct(rv):
#inputs:
#rv is a list [rangesigs, MG, mixRing, ecdhInfo, outPk]
#rangesigs is a list of one rangeproof for each output
#MG is the mgsig [ss, cc, II]
#mixRing is a ctkeyMatrix
#ecdhInfo is a list of masks / amounts for each output
#outPk is a vector of ctkeys (since we have computed the commitment for each amount)
#outputs:
#true or false
rvb = True
tmp = True
for i in range(0, len(rv.outPk)):
tmp = verRange(rv.outPk[i].mask, rv.rangeSigs[i])
print(tmp)
rvb = rvb and tmp
mgVerd = verRctMG(rv.MG, rv.mixRing, rv.outPk)
print(mgVerd)
return (rvb and mgVerd)
def decodeRct(rv, sk, i):
#inputs:
#rctSig is a list [ rangesigs, MG, mixRing, ecdhInfo, outPk]
#rangesigs is a list of one rangeproof for each output
#MG is the mgsig [ss, cc, II]
#mixRing is a ctkeyMatrix
#ecdhInfo is a list of masks / amounts for each output
#outPk is a vector of ctkeys (since we have computed the commitment for each amount)
#sk is the secret key of the receiver
#i is the index of the receiver in the rctSig (in case of multiple destinations)
#outputs:
#the amount received
decodedTuple = ecdhDecode(rv.ecdhInfo[i], sk)
mask = decodedTuple.mask
amount = decodedTuple.amount
C = rv.outPk[i].mask
H = getHForCT()
Ctmp = MiniNero.addKeys(MiniNero.scalarmultBase(mask), MiniNero.scalarmultKey(H, amount))
if (MiniNero.subKeys(C, Ctmp) != MiniNero.identity()):
print("warning, amount decoded incorrectly, will be unable to spend")
return MiniNero.hexToInt(amount)