forked from lh3/gfatools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gfa-bbl.c
372 lines (346 loc) · 10.2 KB
/
gfa-bbl.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
#include <assert.h>
#include <stdio.h>
#include "gfa-priv.h"
#include "kalloc.h"
#include "ksort.h"
#include "kvec.h"
#define generic_key(x) (x)
KRADIX_SORT_INIT(gfa32, uint32_t, generic_key, 4)
void gfa_sort_ref_arc(gfa_t *g)
{
uint32_t v, n_vtx = gfa_n_vtx(g);
for (v = 0; v < n_vtx; ++v) {
gfa_seg_t *s = &g->seg[v>>1];
int32_t i, nv;
gfa_arc_t *av, b;
if (s->rank != 0) continue;
nv = gfa_arc_n(g, v);
av = gfa_arc_a(g, v);
for (i = 0; i < nv; ++i) {
uint32_t w = av[i].w;
gfa_seg_t *t = &g->seg[w>>1];
if (t->rank == 0 && t->snid == s->snid && (v&1) == (w&1)) {
if (((v&1) == 0 && s->soff + s->len == t->soff) || ((v&1) == 1 && t->soff + t->len == s->soff))
break;
}
}
if (nv > 0 && i == nv) fprintf(stderr, "X\t%c%s\t%d\t%s\t%d\n", "><"[v&1], s->name, i, g->sseq[s->snid].name, s->soff);
assert(nv == 0 || i < nv);
if (i > 0 && i < nv) b = av[i], av[i] = av[0], av[0] = b;
}
}
void gfa_sub_print(FILE *fp, const gfa_t *g, const gfa_sub_t *sub)
{
int32_t i, j;
for (i = 0; i < sub->n_v; ++i) {
gfa_subv_t *p = &sub->v[i];
fprintf(fp, "[%d]\t%d\t%c%s\t%d\t%d", i, p->v, "><"[p->v&1], g->seg[p->v>>1].name, p->d, p->n);
if (p->n > 0) {
fputc('\t', fp);
for (j = 0; j < p->n; ++j) {
if (j) fputc(',', fp);
fprintf(fp, "%d", (uint32_t)(sub->a[p->off + j]>>32));
}
}
fputc('\n', fp);
}
}
/****************
* Tarjan's SCC *
****************/
typedef struct {
uint32_t index, low:31, stack:1;
uint32_t i; // index in gfa_sub_t::v[]; a temporary field
uint32_t start; // starting vertex
} gfa_scinfo_t;
struct gfa_scbuf_s {
uint32_t index;
gfa_scinfo_t *a; // node information
kvec_t(uint32_t) ts; // Tarjan's stack
kvec_t(uint64_t) ds; // DFS stack
};
gfa_scbuf_t *gfa_scbuf_init(const gfa_t *g)
{
uint32_t v, n_vtx = gfa_n_vtx(g);
gfa_scbuf_t *b;
GFA_CALLOC(b, 1);
GFA_CALLOC(b->a, n_vtx);
for (v = 0; v < n_vtx; ++v)
b->a[v].index = b->a[v].start = (uint32_t)-1;
return b;
}
void gfa_scbuf_destroy(gfa_scbuf_t *b)
{
free(b->a); free(b->ts.a); free(b->ds.a); free(b);
}
gfa_sub_t *gfa_scc1(void *km0, const gfa_t *g, gfa_scbuf_t *b, uint32_t v0)
{
gfa_sub_t *sub;
uint32_t k, off, m_v = 0;
KCALLOC(km0, sub, 1);
sub->km = km0;
kv_push(uint64_t, b->ds, (uint64_t)v0<<32);
while (b->ds.n > 0) {
uint64_t x = kv_pop(b->ds);
uint32_t i = (uint32_t)x, v = x>>32, nv;
if (i == 0) { // i is the number of outgoing edges already visited
b->a[v].low = b->a[v].index = b->index++;
b->a[v].stack = 1;
kv_push(uint32_t, b->ts, v);
}
nv = gfa_arc_n(g, v);
if (i == nv) { // done with v
if (b->a[v].low == b->a[v].index) {
int32_t i, j = b->ts.n - 1;
while (b->ts.a[j] != v) --j;
for (i = b->ts.n - 1; i >= j; --i) {
uint32_t w = b->ts.a[i];
gfa_subv_t *p;
//fprintf(stderr, "V\t%c%s\t%d\t%c%s\t%d\t%d\n", "><"[v&1], g->seg[v>>1].name, i, "><"[w&1], g->seg[w>>1].name, b->a[w^1].stack, b->a[w].index);
if (sub->n_v == m_v) KEXPAND(sub->km, sub->v, m_v);
p = &sub->v[sub->n_v++];
p->v = w;
b->a[w].stack = 0;
}
b->ts.n = j;
}
if (b->ds.n > 0) { // if the DFS stack is not empty, update the top element
uint32_t w = v;
v = b->ds.a[b->ds.n - 1] >> 32;
b->a[v].low = b->a[v].low < b->a[w].low? b->a[v].low : b->a[w].low;
}
} else { // process v's neighbor av[i].w
gfa_arc_t *av = gfa_arc_a(g, v);
uint32_t w = av[i].w;
kv_push(uint64_t, b->ds, (uint64_t)v<<32 | (i+1)); // update the old top of the stack
if (b->a[w].index == (uint32_t)-1 && b->a[w^1].stack == 0)
kv_push(uint64_t, b->ds, (uint64_t)w<<32);
else if (b->a[w].stack)
b->a[v].low = b->a[v].low < b->a[w].index? b->a[v].low : b->a[w].index;
}
}
// reverse the vertex array
for (k = 0; k < sub->n_v>>1; ++k) {
gfa_subv_t x;
x = sub->v[k], sub->v[k] = sub->v[sub->n_v - k - 1], sub->v[sub->n_v - k - 1] = x;
}
// fill other fields in sub
for (k = 0; k < sub->n_v; ++k)
b->a[sub->v[k].v].start = v0, b->a[sub->v[k].v].i = k;
for (k = 0, off = 0; k < sub->n_v; ++k) { // precompute the length of gfa_sub_t::a[]
uint32_t v = sub->v[k].v;
int32_t i, nv = gfa_arc_n(g, v);
gfa_arc_t *av = gfa_arc_a(g, v);
for (i = 0; i < nv; ++i)
if (b->a[av[i].w].start == v0)
++off;
}
sub->n_a = off;
KCALLOC(sub->km, sub->a, sub->n_a);
for (k = 0, off = 0; k < sub->n_v; ++k) {
uint32_t o0, v = sub->v[k].v;
int32_t i, nv = gfa_arc_n(g, v);
gfa_arc_t *av = gfa_arc_a(g, v);
for (i = 0, o0 = off; i < nv; ++i)
if (b->a[av[i].w].start == v0)
sub->a[off++] = (uint64_t)b->a[av[i].w].i << 32 | (&av[i] - g->arc);
sub->v[k].d = 0;
sub->v[k].off = o0;
sub->v[k].n = off - o0;
if (o0 < off) {
radix_sort_gfa64(&sub->a[o0], &sub->a[off]);
if (sub->a[o0]>>32 <= k) sub->is_dag = 0;
}
}
return sub;
}
void gfa_scc_all(const gfa_t *g)
{
uint32_t v, n_vtx = gfa_n_vtx(g);
gfa_scbuf_t *b;
b = gfa_scbuf_init(g);
for (v = 0; v < n_vtx; ++v)
if (b->a[v].index == (uint32_t)-1 && b->a[v^1].index == (uint32_t)-1) {
gfa_sub_t *sub;
sub = gfa_scc1(0, g, b, v);
gfa_sub_print(stderr, g, sub);
gfa_sub_destroy(sub);
}
gfa_scbuf_destroy(b);
}
void gfa_sub_destroy(gfa_sub_t *sub)
{
void *km;
if (sub == 0) return;
km = sub->km;
kfree(km, sub->v); kfree(km, sub->a); kfree(km, sub);
}
/******************
* Bubble calling *
******************/
typedef struct {
int32_t ld, sd, rd;
int32_t lp, sp;
float lf, sf, rf;
} bb_aux_t;
static void bb_write_seq(const gfa_t *g, int32_t n, const uint32_t *v, int32_t l_seq, char *seq)
{
int32_t k, l;
for (k = n - 1, l = 0; k >= 0; --k) {
const gfa_seg_t *s = &g->seg[v[k]>>1];
if (v[k]&1) {
int32_t p;
for (p = s->len - 1; p >= 0; --p)
seq[l++] = gfa_comp_table[(uint8_t)s->seq[p]];
} else {
memcpy(&seq[l], s->seq, s->len);
l += s->len;
}
}
assert(l == l_seq);
seq[l] = 0;
}
static int32_t bb_n_paths(const gfa_t *g, const gfa_sub_t *sub, int32_t js, int32_t je)
{
int32_t j, k;
int64_t *cnt, c;
GFA_CALLOC(cnt, je - js + 1);
cnt[0] = 1;
for (j = js; j < je; ++j) {
const gfa_subv_t *t = &sub->v[j];
for (k = 0; k < t->n; ++k) {
uint64_t a = sub->a[t->off + k];
int32_t jv = (int32_t)(a>>32);
if (jv <= j || jv > je) continue;
if (cnt[jv - js] + cnt[j - js] > INT32_MAX)
cnt[jv - js] = INT32_MAX;
else cnt[jv - js] += cnt[j - js];
}
}
c = cnt[je - js];
free(cnt);
return c < INT32_MAX? c : INT32_MAX;
}
gfa_bubble_t *gfa_bubble(const gfa_t *g, int32_t *n_bb_)
{
uint32_t i, *vs, *vmin, *vtmp = 0;
int32_t n_bb = 0, m_bb = 0, m_vtmp = 0;
gfa_bubble_t *bb = 0;
gfa_scbuf_t *scbuf;
GFA_MALLOC(vs, g->n_sseq);
GFA_MALLOC(vmin, g->n_sseq);
for (i = 0; i < g->n_sseq; ++i)
vs[i] = (uint32_t)-1, vmin[i] = UINT32_MAX;
for (i = 0; i < g->n_seg; ++i) {
const gfa_seg_t *s = &g->seg[i];
if (s->rank != 0 || s->snid < 0) continue;
if ((uint32_t)s->soff < vmin[s->snid])
vmin[s->snid] = s->soff, vs[s->snid] = i<<1;
}
free(vmin);
scbuf = gfa_scbuf_init(g);
for (i = 0; i < g->n_sseq; ++i) {
gfa_sub_t *sub;
int32_t j, jst, max_a, max_soff;
bb_aux_t *ba;
if (vs[i] == (uint32_t)-1) continue;
#if 0
sub = gfa_sub_from(0, g, vs[i], 0);
#else
sub = gfa_scc1(0, g, scbuf, vs[i]);
#endif
//gfa_sub_print(stderr, g, sub);
GFA_CALLOC(ba, sub->n_v);
for (j = 0; j < sub->n_v; ++j)
ba[j].sd = INT32_MAX, ba[j].lp = ba[j].sp = -1;
ba[0].sd = 0;
for (j = 0; j < sub->n_v; ++j) {
gfa_subv_t *t = &sub->v[j];
int32_t k;
for (k = 0; k < t->n; ++k) {
uint64_t a = sub->a[t->off + k];
int32_t jv = (int32_t)(a>>32);
int32_t l = (int32_t)g->arc[(uint32_t)a].v_lv;
if (jv <= j) continue; // skip loop or cycle
if (ba[jv].sd >= ba[j].sd + l)
ba[jv].sd = ba[j].sd + l, ba[jv].sp = j;
if (ba[jv].ld < ba[j].ld + l)
ba[jv].ld = ba[j].ld + l, ba[jv].lp = j;
}
}
for (j = 0, jst = 0, max_a = max_soff = -1; j < sub->n_v; ++j) {
gfa_subv_t *t = &sub->v[j];
int32_t k;
if (j == max_a && g->seg[t->v>>1].soff > max_soff) {
const gfa_seg_t *sst = &g->seg[sub->v[jst].v>>1];
const gfa_seg_t *sen = &g->seg[t->v>>1];
if (sst->snid == i && sen->snid == i) {
int32_t n, l;
uint32_t *v;
gfa_bubble_t *b;
// basic information
if (n_bb == m_bb) GFA_EXPAND(bb, m_bb);
b = &bb[n_bb++];
b->snid = i;
b->vs = sub->v[jst].v;
b->ve = t->v;
b->ss = sst->soff + sst->len;
b->se = sen->soff;
b->len_min = ba[j].sd - ba[jst].sd - sst->len;
b->len_max = ba[j].ld - ba[jst].ld - sst->len;
b->n_paths = bb_n_paths(g, sub, jst, j);
//fprintf(stderr, "X\t%s[%d]\tvs=%c%s\tve=%c%s\tlen_min=%d\n", g->sseq[i].name, i, "><"[b->vs&1], g->seg[b->vs>>1].name, "><"[b->ve&1], g->seg[b->ve>>1].name, b->len_min);
assert(b->len_min >= 0);
assert(b->len_max >= 0 && b->len_max >= b->len_min);
b->n_seg = j - jst + 1;
l = (b->len_min + 1) + (b->len_max + 1);
l = (l + 3) / 4 + b->n_seg;
GFA_CALLOC(b->v, l);
b->seq_min = (char*)(b->v + b->n_seg);
b->seq_max = b->seq_min + b->len_min + 1;
for (k = jst; k <= j; ++k)
b->v[k - jst] = sub->v[k].v;
// test bubble involving both strands (mostly inversions)
if (b->n_seg > m_vtmp) {
m_vtmp = b->n_seg;
kroundup32(m_vtmp);
GFA_REALLOC(vtmp, m_vtmp);
}
for (k = 0; k < b->n_seg; ++k) vtmp[k] = b->v[k]>>1;
radix_sort_gfa32(vtmp, vtmp + b->n_seg);
for (k = 1; k < b->n_seg; ++k)
if (vtmp[k] == vtmp[k-1]) break;
b->is_bidir = (k < b->n_seg);
// generate sequences and cf_min/cf_max
GFA_MALLOC(v, j - jst);
k = j, n = 0;
while (k > jst) {
if (k < j) v[n++] = sub->v[k].v;
k = ba[k].sp;
}
bb_write_seq(g, n, v, b->len_min, b->seq_min);
k = j, n = 0;
while (k > jst) {
if (k < j) v[n++] = sub->v[k].v;
k = ba[k].lp;
}
bb_write_seq(g, n, v, b->len_max, b->seq_max);
free(v);
} // ~if(sst->snid==i&&sen->snid==i)
max_a = max_soff = -1, jst = j;
} // ~if(j==max_a)
for (k = 0; k < t->n; ++k)
if ((int32_t)(sub->a[t->off + k]>>32) > max_a)
max_a = sub->a[t->off + k]>>32;
if (g->seg[t->v>>1].snid == i && g->seg[t->v>>1].soff > max_soff)
max_soff = g->seg[t->v>>1].soff;
}
free(ba);
gfa_sub_destroy(sub);
}
free(vtmp);
gfa_scbuf_destroy(scbuf);
free(vs);
*n_bb_ = n_bb;
return bb;
}