First, if you haven't already, make sure to install Swan. After installing, you'll be able to run Swan from Python.
Then, download the data and the reference transcriptome annotation from here. The bash commands to do so are given below.
The main workflow to get started with Swan consists of:
- Adding a reference transcriptome
- Adding a transcriptome for your samples
- Adding abundance information
- Adding metadata to your datasets
Other sections:
- Example data download
- Starting and initializing your SwanGraph
- Saving and loading your SwanGraph
- Behavior with Cerberus
This page can also be read from top to bottom, just know that you may be running things more than once!
For information on the file formats needed to use Swan, please read the file format specifications FAQ.
This data is the data used in the Swan publication
Run this block in your bash terminal
mkdir figures
# download files
wget https://zenodo.org/record/8118614/files/data.tgz
# expand files
tar -xzf data.tgz
The rest of the code in this tutorial should be run in using Python
Initialize an empty SwanGraph and add the transcriptome annotation to the SwanGraph.
import swan_vis as swan
# initialize a new SwanGraph
sg = swan.SwanGraph()
Note: to initialize a SwanGraph in single-cell mode (which will avoid calculating percent isoform use [pi] numbers for each cell), use the following code:
sg = swan.SwanGraph(sc=True)
annot_gtf = 'data/gencode.v29.annotation.gtf'
data_gtf = 'data/all_talon_observedOnly.gtf'
ab_file = 'data/all_talon_abundance_filtered.tsv'
talon_db = 'data/talon.db'
adata_file = 'data/swan_anndata.h5ad'
pass_list = 'data/all_pass_list.csv'
meta = 'data/metadata.tsv'
# add an annotation transcriptome
sg.add_annotation(annot_gtf)
Adding annotation to the SwanGraph
Add all filtered transcript models to the SwanGraph.
# add a dataset's transcriptome to the SwanGraph
sg.add_transcriptome(data_gtf)
Adding transcriptome to the SwanGraph
You can use an abundance matrix with columns for each desired dataset to add datasets to the SwanGraph. The file format is specified here.
# add each dataset's abundance information to the SwanGraph
sg.add_abundance(ab_file)
Adding abundance for datasets hepg2_1, hepg2_2, hffc6_1, hffc6_2, hffc6_3 to SwanGraph.
/Users/fairliereese/miniconda3/lib/python3.7/site-packages/anndata/_core/anndata.py:120: ImplicitModificationWarning: Transforming to str index.
warnings.warn("Transforming to str index.", ImplicitModificationWarning)
If you have abundance information and metadata information in AnnData format, you can use this as direct input into Swan. This will help circumvent the dense matrix representation of the TSV in the case of very large datasets or single-cell data.
# add abundance for each dataset from the AnnData into the SwanGraph
sg = swan.SwanGraph()
sg.add_annotation(annot_gtf)
sg.add_transcriptome(data_gtf)
sg.add_adata(adata_file)
Adding annotation to the SwanGraph
Adding transcriptome to the SwanGraph
Adding abundance for datasets hepg2_1, hepg2_2, hffc6_1, hffc6_2, hffc6_3 to SwanGraph.
Calculating TPM...
Calculating PI...
Calculating edge usage...
/Users/fairliereese/Documents/programming/mortazavi_lab/bin/swan_vis/swan_vis/swangraph.py:828: FutureWarning: X.dtype being converted to np.float32 from float64. In the next version of anndata (0.9) conversion will not be automatic. Pass dtype explicitly to avoid this warning. Pass `AnnData(X, dtype=X.dtype, ...)` to get the future behavour.
adata = anndata.AnnData(var=var, obs=obs, X=X)
/Users/fairliereese/miniconda3/envs/scanpy_2/lib/python3.7/site-packages/anndata/_core/anndata.py:121: ImplicitModificationWarning: Transforming to str index.
warnings.warn("Transforming to str index.", ImplicitModificationWarning)
Calculating TSS usage...
/Users/fairliereese/Documents/programming/mortazavi_lab/bin/swan_vis/swan_vis/swangraph.py:759: FutureWarning: X.dtype being converted to np.float32 from float64. In the next version of anndata (0.9) conversion will not be automatic. Pass dtype explicitly to avoid this warning. Pass `AnnData(X, dtype=X.dtype, ...)` to get the future behavour.
adata = anndata.AnnData(var=var, obs=obs, X=X)
Calculating TES usage...
By adding abundance information from either an AnnData or TSV file, Swan will also automatically calculate the counts and TPM for each TSS, TES, and intron or exon. If you had previously used add_transcriptome()
to add a GTF that was generated by Cerberus or uses Cerberus-style transcript IDs (ie. <gene_id>[1,1,1]), Swan will also calculate intron chain counts and TPM automatically.
You can also store gene expression in the SwanGraph. This can either be done from a TALON abundance TSV that contains transcript-level counts where the counts for each transcript will be summed up across the gene. Alternatively, supply this function a gene-level counts matrix where the first column is the gene ID rather than the transcript ID, but otherwise follows the input abundance TSV format.
# add gene-level abundance to the SwanGraph
sg.add_abundance(ab_file, how='gene')
/Users/fairliereese/Documents/programming/mortazavi_lab/bin/swan_vis/swan_vis/swangraph.py:363: FutureWarning: X.dtype being converted to np.float32 from int64. In the next version of anndata (0.9) conversion will not be automatic. Pass dtype explicitly to avoid this warning. Pass `AnnData(X, dtype=X.dtype, ...)` to get the future behavour.
adata = anndata.AnnData(var=var, obs=obs, X=X)
Adding abundance for datasets hepg2_1, hepg2_2, hffc6_1, hffc6_2, hffc6_3 to SwanGraph.
Calculating TPM...
Following this, you can save your SwanGraph so you can easily work with it again without re-adding all the data.
# save the SwanGraph as a Python pickle file
sg.save_graph('data/swan')
Saving graph as data/swan.p
And you can reload the graph again.
# load up a saved SwanGraph from a pickle file
sg = swan.read('data/swan.p')
Read in graph from data/swan.p
Swan is also directly compatible with TALON databases and can pull transcript models directly from them. You can also optionally pass in a list of isoforms from talon_filter_transcripts
to filter your input transcript models.
# for this new example, create a new empty SwanGraph
sg = swan.SwanGraph()
# and add the annotation transcriptome to it
sg.add_annotation(annot_gtf)
# add transcriptome from TALON db
sg.add_transcriptome(talon_db, pass_list=pass_list)
# add each dataset's abundance information to the SwanGraph
sg.add_abundance(ab_file)
Adding annotation to the SwanGraph
Adding transcriptome to the SwanGraph
/Users/fairliereese/Documents/programming/mortazavi_lab/bin/swan_vis/swan_vis/swangraph.py:346: FutureWarning: X.dtype being converted to np.float32 from int64. In the next version of anndata (0.9) conversion will not be automatic. Pass dtype explicitly to avoid this warning. Pass `AnnData(X, dtype=X.dtype, ...)` to get the future behavour.
adata = anndata.AnnData(var=var, obs=obs, X=X)
Adding abundance for datasets hepg2_1, hepg2_2, hffc6_1, hffc6_2, hffc6_3 to SwanGraph.
Calculating TPM...
Calculating PI...
Calculating edge usage...
/Users/fairliereese/Documents/programming/mortazavi_lab/bin/swan_vis/swan_vis/swangraph.py:810: FutureWarning: X.dtype being converted to np.float32 from float64. In the next version of anndata (0.9) conversion will not be automatic. Pass dtype explicitly to avoid this warning. Pass `AnnData(X, dtype=X.dtype, ...)` to get the future behavour.
/Users/fairliereese/miniconda3/envs/scanpy_2/lib/python3.7/site-packages/anndata/_core/anndata.py:121: ImplicitModificationWarning: Transforming to str index.
warnings.warn("Transforming to str index.", ImplicitModificationWarning)
Calculating TSS usage...
/Users/fairliereese/Documents/programming/mortazavi_lab/bin/swan_vis/swan_vis/swangraph.py:741: FutureWarning: X.dtype being converted to np.float32 from float64. In the next version of anndata (0.9) conversion will not be automatic. Pass dtype explicitly to avoid this warning. Pass `AnnData(X, dtype=X.dtype, ...)` to get the future behavour.
Calculating TES usage...
Swan provides functionality to perform tests and plotting on the basis of metadata categories. Add metadata by calling the SwanGraph.add_metadata()
function, or use the SwanGraph.add_adata()
function to add both expression information and metadata at the same time.
sg = swan.read('data/swan.p')
sg.add_metadata(meta)
Read in graph from data/swan.p
/Users/fairliereese/miniconda3/envs/scanpy_2/lib/python3.7/site-packages/anndata/_core/anndata.py:798: UserWarning:
AnnData expects .obs.index to contain strings, but got values like:
[0, 1, 2, 3, 4]
Inferred to be: integer
value_idx = self._prep_dim_index(value.index, attr)
sg.adata.obs
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
cell_line | replicate | dataset | total_counts | description | |
---|---|---|---|---|---|
index | |||||
hepg2_1 | hepg2 | 1 | hepg2_1 | 499647.0 | liver |
hepg2_2 | hepg2 | 2 | hepg2_2 | 848447.0 | liver |
hffc6_1 | hffc6 | 1 | hffc6_1 | 761493.0 | fibroblast |
hffc6_2 | hffc6 | 2 | hffc6_2 | 787967.0 | fibroblast |
hffc6_3 | hffc6 | 3 | hffc6_3 | 614921.0 | fibroblast |
When you use a Cerberus GTF in SwanGraph.add_annotation()
or SwanGraph.add_transcriptome()
, keep in mind the following:
- Swan will use the TSS / TES assignments as dictated by Cerberus to define unique entries in
SwanGraph.tss_adata
andSwanGraph.tes_adata
. For instance, if the same vertex is used in more than one gene, they will still be treated as separate vertices in the TSS / TES AnnDatas. - Swan will automatically pull intron chain information from the transcript triplet in Cerberus and use it to generate an AnnData tracking the expression of intron chains separately from the transcripts they come from in
SwanGraph.ic_adata
. This can also be used to perform isoform switching tests. - Currently, Swan does not parse Cerberus novelty categories. We are hoping to support this in a future release.
sg = swan.read('data/swan_modelad.p')
sg.ic_adata.var.tail()
Read in graph from data/swan_modelad.p
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
gid | gname | ic_name | n_cells | |
---|---|---|---|---|
ic_id | ||||
ENSMUSG00000118369_2 | ENSMUSG00000118369 | Gm30541 | Gm30541_2 | 14 |
ENSMUSG00000118380_3 | ENSMUSG00000118380 | Gm36037 | Gm36037_3 | 1 |
ENSMUSG00000118382_1 | ENSMUSG00000118382 | Gm8373 | Gm8373_1 | 2 |
ENSMUSG00000118383_1 | ENSMUSG00000118383 | Gm50321 | Gm50321_1 | 14 |
ENSMUSG00000118390_1 | ENSMUSG00000118390 | Gm50102 | Gm50102_1 | 1 |