forked from HumanSignal/label-studio-ml-backend
-
Notifications
You must be signed in to change notification settings - Fork 0
/
docker-compose.yml
43 lines (40 loc) · 1.55 KB
/
docker-compose.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
version: "3.8"
services:
mmdetection-3:
container_name: mmdetection-3
image: heartexlabs/label-studio-ml-backend:mmdetection3-master
build:
context: .
args:
TEST_ENV: ${TEST_ENV}
environment:
# specify these parameters if you want to use basic auth for the model server
- BASIC_AUTH_USER=
- BASIC_AUTH_PASS=
# set the log level for the model server
- LOG_LEVEL=DEBUG
# specify the number of workers and threads for the model server
- WORKERS=1
- THREADS=8
# specify the model directory (likely you don't need to change this)
- MODEL_DIR=/data/models
# mmdetection model parameters
- CHECKPOINT_FILE=yolov3_mobilenetv2_320_300e_coco_20210719_215349-d18dff72.pth
- CONFIG_FILE=yolov3_mobilenetv2_8xb24-320-300e_coco.py
- DEVICE=cpu
- SCORE_THRESHOLD=0.5
# Specify the Label Studio URL and API key to access
# uploaded, local storage and cloud storage files.
# Do not use 'localhost' as it does not work within Docker containers.
# Use prefix 'http://' or 'https://' for the URL always.
# Determine the actual IP using 'ifconfig' (Linux/Mac) or 'ipconfig' (Windows).
- LABEL_STUDIO_URL=
- LABEL_STUDIO_API_KEY=
# for s3 storage you can specify AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY,
# it will work faster than using intermediate LS API for your file URL resolving from s3
- AWS_ACCESS_KEY_ID=
- AWS_SECRET_ACCESS_KEY=
ports:
- "9090:9090"
volumes:
- "./data/server:/data"