-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearchAgents.py
644 lines (525 loc) · 23.4 KB
/
searchAgents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
# searchAgents.py
# ---------------
# Licensing Information: Please do not distribute or publish solutions to this
# project. You are free to use and extend these projects for educational
# purposes. The Pacman AI projects were developed at UC Berkeley, primarily by
# John DeNero ([email protected]) and Dan Klein ([email protected]).
# For more info, see http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html
"""
This file contains all of the agents that can be selected to
control Pacman. To select an agent, use the '-p' option
when running pacman.py. Arguments can be passed to your agent
using '-a'. For example, to load a SearchAgent that uses
depth first search (dfs), run the following command:
> python pacman.py -p SearchAgent -a searchFunction=depthFirstSearch
Commands to invoke other search strategies can be found in the
project description.
Please only change the parts of the file you are asked to.
Look for the lines that say
"*** YOUR CODE HERE ***"
The parts you fill in start about 3/4 of the way down. Follow the
project description for details.
Good luck and happy searching!
"""
from game import Directions
from game import Agent
from game import Actions
import util
import time
import search
import searchAgents
class GoWestAgent(Agent):
"An agent that goes West until it can't."
def getAction(self, state):
"The agent receives a GameState (defined in pacman.py)."
if Directions.WEST in state.getLegalPacmanActions():
return Directions.WEST
else:
return Directions.STOP
#######################################################
# This portion is written for you, but will only work #
# after you fill in parts of search.py #
#######################################################
class SearchAgent(Agent):
"""
This very general search agent finds a path using a supplied search algorithm for a
supplied search problem, then returns actions to follow that path.
As a default, this agent runs DFS on a PositionSearchProblem to find location (1,1)
Options for fn include:
depthFirstSearch or dfs
breadthFirstSearch or bfs
Note: You should NOT change any code in SearchAgent
"""
def __init__(self, fn='depthFirstSearch', prob='PositionSearchProblem', heuristic='nullHeuristic'):
# Warning: some advanced Python magic is employed below to find the right functions and problems
# Get the search function from the name and heuristic
if fn not in dir(search):
raise AttributeError, fn + ' is not a search function in search.py.'
func = getattr(search, fn)
if 'heuristic' not in func.func_code.co_varnames:
print('[SearchAgent] using function ' + fn)
self.searchFunction = func
else:
if heuristic in dir(searchAgents):
heur = getattr(searchAgents, heuristic)
elif heuristic in dir(search):
heur = getattr(search, heuristic)
else:
raise AttributeError, heuristic + ' is not a function in searchAgents.py or search.py.'
print('[SearchAgent] using function %s and heuristic %s' % (fn, heuristic))
# Note: this bit of Python trickery combines the search algorithm and the heuristic
self.searchFunction = lambda x: func(x, heuristic=heur)
# Get the search problem type from the name
if prob not in dir(searchAgents) or not prob.endswith('Problem'):
raise AttributeError, prob + ' is not a search problem type in SearchAgents.py.'
self.searchType = getattr(searchAgents, prob)
print('[SearchAgent] using problem type ' + prob)
def registerInitialState(self, state):
"""
This is the first time that the agent sees the layout of the game board. Here, we
choose a path to the goal. In this phase, the agent should compute the path to the
goal and store it in a local variable. All of the work is done in this method!
state: a GameState object (pacman.py)
"""
if self.searchFunction == None: raise Exception, "No search function provided for SearchAgent"
starttime = time.time()
problem = self.searchType(state) # Makes a new search problem
self.actions = self.searchFunction(problem) # Find a path
totalCost = problem.getCostOfActions(self.actions)
print('Path found with total cost of %d in %.1f seconds' % (totalCost, time.time() - starttime))
if '_expanded' in dir(problem): print('Search nodes expanded: %d' % problem._expanded)
def getAction(self, state):
"""
Returns the next action in the path chosen earlier (in registerInitialState). Return
Directions.STOP if there is no further action to take.
state: a GameState object (pacman.py)
"""
if 'actionIndex' not in dir(self): self.actionIndex = 0
i = self.actionIndex
self.actionIndex += 1
if i < len(self.actions):
return self.actions[i]
else:
return Directions.STOP
class PositionSearchProblem(search.SearchProblem):
"""
A search problem defines the state space, start state, goal test,
successor function and cost function. This search problem can be
used to find paths to a particular point on the pacman board.
The state space consists of (x,y) positions in a pacman game.
Note: this search problem is fully specified; you should NOT change it.
"""
def __init__(self, gameState, costFn = lambda x: 1, goal=(1,1), start=None, warn=True):
"""
Stores the start and goal.
gameState: A GameState object (pacman.py)
costFn: A function from a search state (tuple) to a non-negative number
goal: A position in the gameState
"""
self.walls = gameState.getWalls()
self.startState = gameState.getPacmanPosition()
if start != None: self.startState = start
self.goal = goal
self.costFn = costFn
if warn and (gameState.getNumFood() != 1 or not gameState.hasFood(*goal)):
print 'Warning: this does not look like a regular search maze'
# For display purposes
self._visited, self._visitedlist, self._expanded = {}, [], 0
def getStartState(self):
return self.startState
def isGoalState(self, state):
isGoal = state == self.goal
# For display purposes only
if isGoal:
self._visitedlist.append(state)
import __main__
if '_display' in dir(__main__):
if 'drawExpandedCells' in dir(__main__._display): #@UndefinedVariable
__main__._display.drawExpandedCells(self._visitedlist) #@UndefinedVariable
return isGoal
def getSuccessors(self, state):
"""
Returns successor states, the actions they require, and a cost of 1.
As noted in search.py:
For a given state, this should return a list of triples,
(successor, action, stepCost), where 'successor' is a
successor to the current state, 'action' is the action
required to get there, and 'stepCost' is the incremental
cost of expanding to that successor
"""
successors = []
for action in [Directions.NORTH, Directions.SOUTH, Directions.EAST, Directions.WEST]:
x,y = state
dx, dy = Actions.directionToVector(action)
nextx, nexty = int(x + dx), int(y + dy)
if not self.walls[nextx][nexty]:
nextState = (nextx, nexty)
cost = self.costFn(nextState)
successors.append( ( nextState, action, cost) )
# Bookkeeping for display purposes
self._expanded += 1
if state not in self._visited:
self._visited[state] = True
self._visitedlist.append(state)
return successors
def getCostOfActions(self, actions):
"""
Returns the cost of a particular sequence of actions. If those actions
include an illegal move, return 999999
"""
if actions == None: return 999999
x,y= self.getStartState()
cost = 0
for action in actions:
# Check figure out the next state and see whether its' legal
dx, dy = Actions.directionToVector(action)
x, y = int(x + dx), int(y + dy)
if self.walls[x][y]: return 999999
cost += self.costFn((x,y))
return cost
class StayEastSearchAgent(SearchAgent):
"""
An agent for position search with a cost function that penalizes being in
positions on the West side of the board.
The cost function for stepping into a position (x,y) is 1/2^x.
"""
def __init__(self):
self.searchFunction = search.uniformCostSearch
costFn = lambda pos: .5 ** pos[0]
self.searchType = lambda state: PositionSearchProblem(state, costFn)
class StayWestSearchAgent(SearchAgent):
"""
An agent for position search with a cost function that penalizes being in
positions on the East side of the board.
The cost function for stepping into a position (x,y) is 2^x.
"""
def __init__(self):
self.searchFunction = search.uniformCostSearch
costFn = lambda pos: 2 ** pos[0]
self.searchType = lambda state: PositionSearchProblem(state, costFn)
def manhattanHeuristic(position, problem, info={}):
"The Manhattan distance heuristic for a PositionSearchProblem"
xy1 = position
xy2 = problem.goal
return abs(xy1[0] - xy2[0]) + abs(xy1[1] - xy2[1])
def euclideanHeuristic(position, problem, info={}):
"The Euclidean distance heuristic for a PositionSearchProblem"
xy1 = position
xy2 = problem.goal
return ( (xy1[0] - xy2[0]) ** 2 + (xy1[1] - xy2[1]) ** 2 ) ** 0.5
#####################################################
# This portion is incomplete. Time to write code! #
#####################################################
class CornersProblem(search.SearchProblem):
"""
This search problem finds paths through all four corners of a layout.
You must select a suitable state space and successor function
"""
def __init__(self, startingGameState):
"""
Stores the walls, pacman's starting position and corners.
"""
self.walls = startingGameState.getWalls()
self.startingPosition = startingGameState.getPacmanPosition()
top, right = self.walls.height-2, self.walls.width-2
self.corners = ((1,1), (1,top), (right, 1), (right, top))
self.heuristicInfo = {}
#boolean tuple keeps track of which corners have been visited
self.corner_bool = (False, False, False, False)
#this problem only needs to know pacman's postion and if the corners have been visited
#so we treat a tuple of those elements as the state
self.startState = (self.startingPosition, self.corner_bool)
for corner in self.corners:
if not startingGameState.hasFood(*corner):
print 'Warning: no food in corner ' + str(corner)
self._expanded = 0 # Number of search nodes expanded
self._visited, self.visitedlist = {}, []
def getStartState(self):
"Returns the start state (in your state space, not the full Pacman state space)"
#state is only pacman position and a list of bools if giving info on if corners have been visited
return self.startState
def isGoalState(self, state):
"""
Returns whether this search state is a goal state of the problem
"""
#if pacman has been to all the corners, the goal is reached. This is when the corner_bool
#encoded in state[1] has all 4 elements reading true
#so we can return that as the goal state value
return state[1].count(True) == 4
def getSuccessors(self, state):
"""
Returns successor states, the actions they require, and a cost of 1.
As noted in search.py:
For a given state, this should return a list of triples,
(successor, action, stepCost), where 'successor' is a
successor to the current state, 'action' is the action
required to get there, and 'stepCost' is the incremental
cost of expanding to that successor
"""
successors = []
for action in [Directions.NORTH, Directions.SOUTH, Directions.EAST, Directions.WEST]:
# Add a successor state to the successor list if the action is legal
# Here's a code snippet for figuring out whether a new position hits a wall:
x,y = state[0]
dx, dy = Actions.directionToVector(action)
nextx, nexty = int(x + dx), int(y + dy)
hitsWall = self.walls[nextx][nexty]
if not hitsWall:
#test if the successor is a corner and if so,
#update the corner_bool to reflect that pacman
#has reached a corner, return that updated corner_bool
#with the successor
if (nextx, nexty) in self.corners:
idx = self.corners.index((nextx, nexty))
new_bool = list(state[1])
new_bool[idx] = True
new_bool = tuple(new_bool)
#otherwise just return the same corner_bool, since no corner has been visited
else: new_bool = state[1]
#add all the successors to the successor list to be returned (ignoring costs)
nextState = ((nextx, nexty), new_bool)
successors.append((nextState, action, 1))
#bookkeeping
self._expanded += 1
return successors
def getCostOfActions(self, actions):
"""
Returns the cost of a particular sequence of actions. If those actions
include an illegal move, return 999999. This is implemented for you.
"""
if actions == None: return 999999
x,y= self.startingPosition
for action in actions:
dx, dy = Actions.directionToVector(action)
x, y = int(x + dx), int(y + dy)
if self.walls[x][y]: return 999999
return len(actions)
def manhattanDistance(pos1, pos2):
"""
returns a general manhattan distance between any 2 points
in the same n-space
pos1: position coordinated in n-space (tuple)
pos2: position coordinated in n-space (tuple)
#Note: realized after writing this that util.py also has a manhattanDistance, so
just ended up using this one since it's in the same file. Goes for euclid as well.
"""
#check that the coordinate system for each point is the same
if len(pos1) != len(pos2):
raise Exception('Coordiantes must be of the same dimension')
return abs(pos1[0] - pos2[0]) + abs(pos1[1] - pos2[1])
def euclidianDistance(pos1, pos2):
"""
returns a general euclidiean distance between any 2 points
in the same n-space
pos1: position coordinated in n-space (tuple)
pos2: position coordinated in n-space (tuple)
"""
euc_dist = 0
if len(pos1) != len(pos2):
raise Exception('Coordiantes must be of the same dimension')
for n in xrange(len(pos1)):
euc_dist += (pos1[n] - pos2[n]) ** 2
return euc_dist**.5
def cornersHeuristic(state, problem):
"""
A heuristic for the CornersProblem that you defined.
state: The current search state
(a data structure you chose in your search problem)
problem: The CornersProblem instance for this layout.
This function should always return a number that is a lower bound
on the shortest path from the state to a goal of the problem; i.e.
it should be admissible. (You need not worry about consistency for
this heuristic to receive full credit.)
"""
corners = problem.corners # These are the corner coordinates
walls = problem.walls # These are the walls of the maze, as a Grid (game.py)
man_dist = 0
#tests if corner has been visited or not, if not gets distance to corner and updates man dist
for n in range(len(corners)):
if state[1][n] == False:
corner_dist = manhattanDistance(state[0], corners[n])
if corner_dist > man_dist:
man_dist = corner_dist
return man_dist
class AStarCornersAgent(SearchAgent):
"A SearchAgent for FoodSearchProblem using A* and your foodHeuristic"
def __init__(self):
self.searchFunction = lambda prob: search.aStarSearch(prob, cornersHeuristic)
self.searchType = CornersProblem
class FoodSearchProblem:
"""
A search problem associated with finding the a path that collects all of the
food (dots) in a Pacman game.
A search state in this problem is a tuple ( pacmanPosition, foodGrid ) where
pacmanPosition: a tuple (x,y) of integers specifying Pacman's position
foodGrid: a Grid (see game.py) of either True or False, specifying remaining food
"""
def __init__(self, startingGameState):
self.start = (startingGameState.getPacmanPosition(), startingGameState.getFood())
self.walls = startingGameState.getWalls()
self.startingGameState = startingGameState
self._expanded = 0
self.heuristicInfo = {} # A dictionary for the heuristic to store information
def getStartState(self):
return self.start
def isGoalState(self, state):
return state[1].count() == 0
def getSuccessors(self, state):
"Returns successor states, the actions they require, and a cost of 1."
successors = []
self._expanded += 1
for direction in [Directions.NORTH, Directions.SOUTH, Directions.EAST, Directions.WEST]:
x,y = state[0]
dx, dy = Actions.directionToVector(direction)
nextx, nexty = int(x + dx), int(y + dy)
if not self.walls[nextx][nexty]:
nextFood = state[1].copy()
nextFood[nextx][nexty] = False
successors.append( ( ((nextx, nexty), nextFood), direction, 1) )
return successors
def getCostOfActions(self, actions):
"""Returns the cost of a particular sequence of actions. If those actions
include an illegal move, return 999999"""
x,y= self.getStartState()[0]
cost = 0
for action in actions:
# figure out the next state and see whether it's legal
dx, dy = Actions.directionToVector(action)
x, y = int(x + dx), int(y + dy)
if self.walls[x][y]:
return 999999
cost += 1
return cost
class AStarFoodSearchAgent(SearchAgent):
"A SearchAgent for FoodSearchProblem using A* and your foodHeuristic"
def __init__(self):
self.searchFunction = lambda prob: search.aStarSearch(prob, foodHeuristic)
self.searchType = FoodSearchProblem
def foodHeuristic(state, problem):
"""
Your heuristic for the FoodSearchProblem goes here.
This heuristic must be consistent to ensure correctness. First, try to come up
with an admissible heuristic; almost all admissible heuristics will be consistent
as well.
If using A* ever finds a solution that is worse uniform cost search finds,
your heuristic is *not* consistent, and probably not admissible! On the other hand,
inadmissible or inconsistent heuristics may find optimal solutions, so be careful.
The state is a tuple ( pacmanPosition, foodGrid ) where foodGrid is a
Grid (see game.py) of either True or False. You can call foodGrid.asList()
to get a list of food coordinates instead.
If you want access to info like walls, capsules, etc., you can query the problem.
For example, problem.walls gives you a Grid of where the walls are.
If you want to *store* information to be reused in other calls to the heuristic,
there is a dictionary called problem.heuristicInfo that you can use. For example,
if you only want to count the walls once and store that value, try:
problem.heuristicInfo['wallCount'] = problem.walls.count()
Subsequent calls to this heuristic can access problem.heuristicInfo['wallCount']
"""
position, foodGrid = state
food_list = foodGrid.asList()
#create and fill list of manhattan distances between pac man and all food items
food_dist = []
for food in food_list:
food_dist.append(manhattanDistance(position, food))
#while there is food on the board return the maximum distance between
#pacman and a food item, otherwise return 0 since goal state
if len(food_list) != 0:
min_food = min(food_dist)
min_idx = food_dist.index(min_food)
max_food = max(food_dist)
max_idx = food_dist.index(max_food)
min_max = manhattanDistance(food_list[min_idx], food_list[max_idx])
#print min_max + min(food_dist)
return max_food
#return 0 when all food is eaten (goal state)
else: return 0
class ClosestDotSearchAgent(SearchAgent):
"Search for all food using a sequence of searches"
def registerInitialState(self, state):
self.actions = []
currentState = state
while(currentState.getFood().count() > 0):
nextPathSegment = self.findPathToClosestDot(currentState) # The missing piece
self.actions += nextPathSegment
for action in nextPathSegment:
legal = currentState.getLegalActions()
if action not in legal:
t = (str(action), str(currentState))
raise Exception, 'findPathToClosestDot returned an illegal move: %s!\n%s' % t
currentState = currentState.generateSuccessor(0, action)
self.actionIndex = 0
print 'Path found with cost %d.' % len(self.actions)
def findPathToClosestDot(self, gameState):
"Returns a path (a list of actions) to the closest dot, starting from gameState"
# Here are some useful elements of the startState
startPosition = gameState.getPacmanPosition()
food = gameState.getFood()
walls = gameState.getWalls()
#will use problem to use another search to quickly return the best move to the
#closest dot
problem = AnyFoodSearchProblem(gameState)
#checked all 3 uninformed seaches, all solved quickly, UCS and bfs returned paths of 350
#which from observation is suboptimal as expected since it only goes for the closest dot
#and doesnt have a picture of the entire system (see food search)
#returns a search from a pacman position to the closest dot to that position
return search.uniformCostSearch(problem)
class AnyFoodSearchProblem(PositionSearchProblem):
"""
A search problem for finding a path to any food.
This search problem is just like the PositionSearchProblem, but
has a different goal test, which you need to fill in below. The
state space and successor function do not need to be changed.
The class definition above, AnyFoodSearchProblem(PositionSearchProblem),
inherits the methods of the PositionSearchProblem.
You can use this search problem to help you fill in
the findPathToClosestDot method.
"""
def __init__(self, gameState):
"Stores information from the gameState. You don't need to change this."
# Store the food for later reference
self.food = gameState.getFood()
# Store info for the PositionSearchProblem (no need to change this)
self.walls = gameState.getWalls()
self.startState = gameState.getPacmanPosition()
self.costFn = lambda x: 1
self._visited, self._visitedlist, self._expanded = {}, [], 0
def isGoalState(self, state):
"""
self.food is a Grid object, so to find the closest food test if your state is a food object
"""
x,y = state
#if the position pacman is in has a food item, the closest food has been found
#so this is a goal state
return self.food[x][y]
##################
# Mini-contest 1 #
##################
#didnt have time to do contest :(
class ApproximateSearchAgent(Agent):
"Implement your contest entry here. Change anything but the class name."
def registerInitialState(self, state):
"This method is called before any moves are made."
"*** YOUR CODE HERE ***"
def getAction(self, state):
"""
From game.py:
The Agent will receive a GameState and must return an action from
Directions.{North, South, East, West, Stop}
"""
"*** YOUR CODE HERE ***"
util.raiseNotDefined()
def mazeDistance(point1, point2, gameState):
"""
Returns the maze distance between any two points, using the search functions
you have already built. The gameState can be any game state -- Pacman's position
in that state is ignored.
Example usage: mazeDistance( (2,4), (5,6), gameState)
This might be a useful helper function for your ApproximateSearchAgent.
"""
x1, y1 = point1
x2, y2 = point2
walls = gameState.getWalls()
#assert not walls[x1][y1], 'point1 is a wall: ' + str(point1)
#assert not walls[x2][y2], 'point2 is a wall: ' + str(point2)
prob = PositionSearchProblem(gameState, start=point1, goal=point2, warn=False)
return len(search.bfs(prob))