-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTest_FinancialCycle.py
699 lines (593 loc) · 44.8 KB
/
Test_FinancialCycle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
#_*_ coding: utf-8 _*_
#import win32com.client
import os
import platform
import copy
import warnings
warnings.filterwarnings(action='ignore')
import pandas as pd
import numpy as np
import math
from scipy.optimize import minimize
from Test_MariaDB import WrapDB
from Test_Figure import Figure
import Wrap_Util
base_dir = (os.path.abspath(os.path.join(os.path.dirname(__file__), '.')))
SC_LOG = True
def maximize_hit_ratio(up_right_case=None, down_right_case=None, up_wrong_case=None, down_wrong_case=None, macro_list=None, index_list=None, timeseries=None,lb=0.00, ub=0.1):
if up_right_case==None and down_right_case==None and up_wrong_case==None and down_wrong_case==None:
return None
def profit(x, args):
right_sum = args
return -sum(x*right_sum)
def sum_weight(x):
return 1-sum(x)
macro_cnt = len(macro_list)
weights_list = {}
for index_cd in index_list:
up_right_sum = np.repeat(0, macro_cnt)
down_right_sum = np.repeat(0, macro_cnt)
up_wrong_sum = np.repeat(0, macro_cnt)
down_wrong_sum = np.repeat(0, macro_cnt)
for idx, macro_cd in enumerate(macro_list):
for time_cd in timeseries:
if up_right_case is not None:
if math.isnan(up_right_case[macro_cd][index_cd][time_cd]) == False:
up_right_sum[idx] += up_right_case[macro_cd][index_cd][time_cd]
# up & down을 구분하지 않고 파라미터가 1개로 전달되는 경우 pass
if down_right_case is not None:
if math.isnan(down_right_case[macro_cd][index_cd][time_cd]) == False:
down_right_sum[idx] += down_right_case[macro_cd][index_cd][time_cd]
# up & down을 구분하지 않고 파라미터가 1개로 전달되는 경우 pass
if up_wrong_case is not None:
if math.isnan(up_wrong_case[macro_cd][index_cd][time_cd]) == False:
up_wrong_sum[idx] += up_wrong_case[macro_cd][index_cd][time_cd]
# up & down을 구분하지 않고 파라미터가 1개로 전달되는 경우 pass
if down_wrong_case is not None:
if math.isnan(down_wrong_case[macro_cd][index_cd][time_cd]) == False:
down_wrong_sum[idx] += down_wrong_case[macro_cd][index_cd][time_cd]
x0 = np.repeat(1 / macro_cnt, macro_cnt)
lbound = np.repeat(lb, macro_cnt)
ubound = np.repeat(ub, macro_cnt)
bnds = tuple(zip(lbound, ubound))
constraints = {'type': 'eq', 'fun': sum_weight}
options = {'ftol': 1e-20, 'maxiter': 5000, 'disp': False}
#print(up_right_sum+down_right_sum+up_wrong_sum+down_wrong_sum)
result = minimize(fun=profit,
x0=x0,
args=(up_right_sum+down_right_sum+up_wrong_sum+down_wrong_sum),
method='SLSQP',
constraints=constraints,
options=options,
bounds=bnds)
weights_list[index_cd] = [round(weight, 2) for weight in result.x]
return weights_list
class FinancialCycle(object):
def __init__(self, db):
self.db = db
self.macro_master_df = None
self.macro_value_df = None
self.pivoted_macro_value_df = None
self.macro_cnt = 0
self.macro_len = 0
self.macro_list = None
self.macro_timeseries = None
self.macro_last_df = {}
self.index_master_df = None
self.index_value_df = None
self.pivoted_index_value_df = None
self.index_cnt = 0
self.index_len = 0
self.index_list = None
self.index_timeseries = None
# status, momentum, diff
self.pivoted_macro_property_dfs = {} # 해당 월의 값은 지수 데이터의 다음 월이랑 매핑, shift df를 이용해 로직 적용
self.pivoted_macro_property_shift_dfs = {} # shift의 단위는 M이고 1개월을 shift 함
# direction, yield
self.pivoted_index_property_dfs = {} # 해당 월의 방향은 해당 row에 저장
# 매크로 데이터의 속성과 지수 데이터의 움직임 관계를 통계냄
# 가중 평균된 매크로 데이터들을 사용하여 지수 데이터의 움직임 관계를 통계냄
self.relation_dfs = {}
self.relation_right_dfs = {}
self.relation_wrong_dfs = {}
self.relation_up_dfs = {}
self.relation_down_dfs = {}
self.relation_up_right_dfs = {}
self.relation_down_right_dfs = {}
self.relation_up_wrong_dfs = {}
self.relation_down_wrong_dfs = {}
# 1. 매크로 데이터의 속성과 지수 데이터의 움직임 관계를 시계열로 관리하며 해당 row에 있는 값은 해당 달의 값을 의미
# (ex. 2/28: 2월에 맞았는지를 의미, 2월의 지수 움직임과 1월의 매크로 통계값)
# 2. 4가지 경우를 그래프에 지수와 같이 보여주기 위해 (-1, 1)구간을 사용하여 표시
# (up & down은 매크로 데이터를 기준으로 하며, right은 양수 wrong은 음수로 표시)
# 3. weighted series는 해당 기간의 상승 ,하락 확률을 분리하여 나타내기 때문에 두가지 정보가 합쳐지면 해당 기간의 시그널이 점수로 계산
# (up_right & down_wrong, down_right & up_wrong)
self.relation_series = {}
self.relation_up_series = {}
self.relation_down_series = {}
self.relation_up_right_series = {}
self.relation_down_right_series = {}
self.relation_up_wrong_series = {}
self.relation_down_wrong_series = {}
self.relation_profit_dfs = {}
def get_macro_master(self):
# 매크로 시계열 데이터 셋
sql = "select a.cd as cd, a.nm as nm, a.ctry as ctry, a.base as base, a.shift as shift, a.unit as unit" \
" from macro_master a" \
" , macro_value b" \
" where a.use_yn = 'y'" \
" and a.cd = b.cd" \
" group by a.cd, a.nm, a.ctry, a.base, a.shift, a.unit" \
" having count(*) > 0"
self.macro_master_df = self.db.select_query(sql)
self.macro_master_df.columns = ('cd', 'nm', 'ctry', 'base', 'shift', 'unit')
self.macro_master_df.set_index('cd', inplace=True)
def get_macro_value(self):
sql = "select a.cd as cd, a.date as date, a.value as value" \
" from macro_value a" \
" , macro_master b" \
" where b.use_yn = 'y'" \
" and a.cd = b.cd"
self.macro_value_df = self.db.select_query(sql)
self.macro_value_df.columns = ('cd', 'date', 'value')
self.pivoted_macro_value_df = self.macro_value_df.pivot(index='date', columns='cd', values='value')
self.set_macro_cnt()
self.set_macro_len()
self.set_macro_list()
self.set_macro_timeseries()
def set_macro_cnt(self):
self.macro_cnt = len(self.pivoted_macro_value_df.columns)
def set_macro_len(self):
self.macro_len = len(self.pivoted_macro_value_df.index)
def set_macro_list(self):
self.macro_list = self.pivoted_macro_value_df.columns
def set_macro_timeseries(self):
self.macro_timeseries = self.pivoted_macro_value_df.index
# 매크로 데이터가 기준값 이상인 경우, r_cd로 분류
# 매크로 데이터가 이전값 보다 경우, r_cd로 분류
def set_macro_property(self, type='momentum', r_cd=(1,-1)):
self.pivoted_macro_property_dfs[type] = pd.DataFrame(columns=self.macro_list, index=self.macro_timeseries)
for macro_cd in self.macro_list:
base_value = self.macro_master_df['base'][macro_cd]
shift = self.macro_master_df['shift'][macro_cd]
unit = self.macro_master_df['unit'][macro_cd]
for idx, date_cd in enumerate(self.macro_timeseries):
if idx > 0:
if type == 'status':
self.pivoted_macro_property_dfs[type][macro_cd][date_cd] = r_cd[0] if self.pivoted_macro_value_df[macro_cd][date_cd] > base_value else r_cd[1]
elif type == 'momentum':
self.pivoted_macro_property_dfs[type][macro_cd][date_cd] = r_cd[0] if self.pivoted_macro_value_df[macro_cd][date_cd] > prev_value else r_cd[1]
# 매크로 데이터 종류에 따라 변화률을 계산하는 방법이 다름
elif type == 'diff':
# 인덱스의 경우 변화률을 계산
if unit == 'I':
self.pivoted_macro_property_dfs[type][macro_cd][date_cd] = self.pivoted_macro_value_df[macro_cd][date_cd] / prev_value - 1
# 퍼센트의 경우 차이를 이용해서 퍼센트 포인트를 계산
elif unit == 'P':
self.pivoted_macro_property_dfs[type][macro_cd][date_cd] = self.pivoted_macro_value_df[macro_cd][date_cd] - prev_value
prev_value = self.pivoted_macro_value_df[macro_cd][date_cd]
# 지수 움직임과 시점을 맞추기 위해 1개월 lag
self.pivoted_macro_property_shift_dfs[type] = self.pivoted_macro_property_dfs[type].shift(shift)
# 구간 예상을 위해 마지막 매크로 데이터 저장
self.macro_last_df[type] = self.pivoted_macro_property_dfs[type][-1:]
def get_index_master(self):
# 지수 시계열 데이터 셋팅
sql = "select cd, nm, ctry" \
" from index_master"
self.index_master_df = db.select_query(sql)
self.index_master_df.columns = ('cd', 'nm', 'ctry')
self.index_master_df.set_index('cd', inplace=True)
def get_index_value(self):
sql = "select cd, date, value" \
" from index_value"
self.index_value_df = db.select_query(sql)
self.index_value_df.columns = ('cd', 'date', 'value')
self.pivoted_index_value_df = self.index_value_df.pivot(index='date', columns='cd', values='value')
self.set_index_cnt()
self.set_index_len()
self.set_index_list()
self.set_index_timeseries()
def set_index_cnt(self):
self.index_cnt = len(self.pivoted_index_value_df.columns)
def set_index_len(self):
self.index_len = len(self.pivoted_index_value_df.index)
def set_index_list(self):
self.index_list = self.pivoted_index_value_df.columns
def set_index_timeseries(self):
self.index_timeseries = self.pivoted_index_value_df.index
# 지수가 상승 or 하락, r_cd로 분류
# 지수 데이터의 단위 수익률
def set_index_property(self, type='direction', r_cd=(1,-1)):
self.pivoted_index_property_dfs[type] = pd.DataFrame(columns=self.index_list, index=self.index_timeseries)
for index_cd in self.index_list:
for idx, date_cd in enumerate(self.index_timeseries):
if idx > 0:
if type == 'direction':
self.pivoted_index_property_dfs[type][index_cd][date_cd] = r_cd[0] if self.pivoted_index_value_df[index_cd][date_cd] > prev_value else r_cd[1]
elif type == 'yield':
self.pivoted_index_property_dfs[type][index_cd][date_cd] = self.pivoted_index_value_df[index_cd][date_cd] / prev_value - 1
prev_value = self.pivoted_index_value_df[index_cd][date_cd]
# 매크로 데이터가 기준값 이상이고 지수 상승, 매크로 데이터가 기준값 이하이고 지수 하락 경우 COUNT, r_cd로 분류
def calc_matching_properties_ratio(self, macro_type='momentum', index_type='direction', r_cd=(1,-1)):
key = macro_type+'_'+index_type
self.relation_dfs[key] = pd.DataFrame(columns=self.macro_list, index=self.index_list)
self.relation_right_dfs[key] = pd.DataFrame(columns=self.macro_list, index=self.index_list)
self.relation_wrong_dfs[key] = pd.DataFrame(columns=self.macro_list, index=self.index_list)
self.relation_up_dfs[key] = pd.DataFrame(columns=self.macro_list, index=self.index_list)
self.relation_down_dfs[key] = pd.DataFrame(columns=self.macro_list, index=self.index_list)
self.relation_up_right_dfs[key] = pd.DataFrame(columns=self.macro_list, index=self.index_list)
self.relation_down_right_dfs[key] = pd.DataFrame(columns=self.macro_list, index=self.index_list)
self.relation_up_wrong_dfs[key] = pd.DataFrame(columns=self.macro_list, index=self.index_list)
self.relation_down_wrong_dfs[key] = pd.DataFrame(columns=self.macro_list, index=self.index_list)
for macro_cd in self.macro_list:
for index_cd in self.index_list:
up_right_cnt = 0
down_right_cnt = 0
up_wrong_cnt = 0
down_wrong_cnt = 0
for date_cd in self.index_timeseries:
# 통계 값에 nan에 의한 오류는 무시
# 매크로 상승, 지수 상승
if self.pivoted_macro_property_shift_dfs[macro_type][macro_cd][date_cd] == r_cd[0] and self.pivoted_index_property_dfs[index_type][index_cd][date_cd] == r_cd[0]:
up_right_cnt += r_cd[0]
# 매크로 하락, 지수 하락
elif self.pivoted_macro_property_shift_dfs[macro_type][macro_cd][date_cd] == r_cd[1] and self.pivoted_index_property_dfs[index_type][index_cd][date_cd] == r_cd[1]:
down_right_cnt += r_cd[0]
# 매크로 상승, 지수 하락
elif self.pivoted_macro_property_shift_dfs[macro_type][macro_cd][date_cd] == r_cd[0] and self.pivoted_index_property_dfs[index_type][index_cd][date_cd] == r_cd[1]:
up_wrong_cnt += r_cd[1]
# 매크로 하락, 지수 상승
elif self.pivoted_macro_property_shift_dfs[macro_type][macro_cd][date_cd] == r_cd[1] and self.pivoted_index_property_dfs[index_type][index_cd][date_cd] == r_cd[0]:
down_wrong_cnt += r_cd[1]
self.relation_dfs[key][macro_cd][index_cd] = (up_right_cnt+down_right_cnt+up_wrong_cnt+down_wrong_cnt) / self.index_len
self.relation_right_dfs[key][macro_cd][index_cd] = (up_right_cnt+down_right_cnt) / self.index_len
self.relation_wrong_dfs[key][macro_cd][index_cd] = (up_wrong_cnt+down_wrong_cnt) / self.index_len
self.relation_up_dfs[key][macro_cd][index_cd] = (up_right_cnt+up_wrong_cnt) / self.index_len
self.relation_down_dfs[key][macro_cd][index_cd] = (down_right_cnt+down_wrong_cnt) / self.index_len
self.relation_up_right_dfs[key][macro_cd][index_cd] = up_right_cnt / self.index_len
self.relation_down_right_dfs[key][macro_cd][index_cd] = down_right_cnt / self.index_len
self.relation_up_wrong_dfs[key][macro_cd][index_cd] = up_wrong_cnt / self.index_len
self.relation_down_wrong_dfs[key][macro_cd][index_cd] = down_wrong_cnt / self.index_len
# r_cd로 분류
def set_matching_properties_series(self, macro_type='momentum', index_type='direction', r_cd=(1,-1)):
key = macro_type+'_'+index_type
self.relation_series[key] = {}
self.relation_up_series[key] = {}
self.relation_down_series[key] = {}
self.relation_up_right_series[key] = {}
self.relation_down_right_series[key] = {}
self.relation_up_wrong_series[key] = {}
self.relation_down_wrong_series[key] = {}
for macro_cd in self.macro_list:
self.relation_series[key][macro_cd] = pd.DataFrame(columns=self.index_list, index=self.index_timeseries)
self.relation_up_series[key][macro_cd] = pd.DataFrame(columns=self.index_list, index=self.index_timeseries)
self.relation_down_series[key][macro_cd] = pd.DataFrame(columns=self.index_list, index=self.index_timeseries)
self.relation_up_right_series[key][macro_cd] = pd.DataFrame(columns=self.index_list, index=self.index_timeseries)
self.relation_down_right_series[key][macro_cd] = pd.DataFrame(columns=self.index_list, index=self.index_timeseries)
self.relation_up_wrong_series[key][macro_cd] = pd.DataFrame(columns=self.index_list, index=self.index_timeseries)
self.relation_down_wrong_series[key][macro_cd] = pd.DataFrame(columns=self.index_list, index=self.index_timeseries)
for index_cd in self.index_list:
for date_cd in self.index_timeseries:
# 통계 값에 nan에 의한 오류는 무시
# 매크로 상승, 지수 상승
if self.pivoted_macro_property_shift_dfs[macro_type][macro_cd][date_cd] == r_cd[0] and self.pivoted_index_property_dfs[index_type][index_cd][date_cd] == r_cd[0]:
self.relation_up_right_series[key][macro_cd][index_cd][date_cd] = r_cd[0]
self.relation_up_series[key][macro_cd] = r_cd[0]
# 매크로 하락, 지수 하락
elif self.pivoted_macro_property_shift_dfs[macro_type][macro_cd][date_cd] == r_cd[1] and self.pivoted_index_property_dfs[index_type][index_cd][date_cd] == r_cd[1]:
self.relation_down_right_series[key][macro_cd][index_cd][date_cd] = r_cd[0]
self.relation_down_series[key][macro_cd] = r_cd[0]
# 매크로 상승, 지수 하락
elif self.pivoted_macro_property_shift_dfs[macro_type][macro_cd][date_cd] == r_cd[0] and self.pivoted_index_property_dfs[index_type][index_cd][date_cd] == r_cd[1]:
self.relation_up_wrong_series[key][macro_cd][index_cd][date_cd] = r_cd[1]
self.relation_up_series[key][macro_cd] = r_cd[1]
# 매크로 하락, 지수 상승
elif self.pivoted_macro_property_shift_dfs[macro_type][macro_cd][date_cd] == r_cd[1] and self.pivoted_index_property_dfs[index_type][index_cd][date_cd] == r_cd[0]:
self.relation_down_wrong_series[key][macro_cd][index_cd][date_cd] = r_cd[1]
self.relation_down_series[key][macro_cd] = r_cd[1]
# 동일하지 않은 경우 패널티(-1) 발생
self.relation_series[key][macro_cd][index_cd][date_cd] = self.pivoted_macro_property_shift_dfs[macro_type][macro_cd][date_cd]*self.pivoted_index_property_dfs[index_type][index_cd][date_cd]
# 현재는 평균만 계산할 수 있음
def calc_matching_properties_profit(self, macro_type='momentum', index_type='direction', r_cd=(1,-1)):
key = macro_type + '_' + index_type
yield_cd = 'yield'
self.relation_profit_dfs[key] = pd.DataFrame(columns=self.macro_list, index=self.index_list)
for macro_cd in self.macro_list:
for index_cd in self.index_list:
profit = 0
for date_cd in self.index_timeseries:
# 매크로 상승, 지수 상승
if self.pivoted_macro_property_shift_dfs[macro_type][macro_cd][date_cd] == r_cd[0] and self.pivoted_index_property_dfs[index_type][index_cd][date_cd] == r_cd[0]:
profit = profit + self.pivoted_index_property_dfs[yield_cd][index_cd][date_cd] if math.isnan(self.pivoted_index_property_dfs[yield_cd][index_cd][date_cd]) == False else 0
# 매크로 하락, 지수 하락
elif self.pivoted_macro_property_shift_dfs[macro_type][macro_cd][date_cd] == r_cd[1] and self.pivoted_index_property_dfs[index_type][index_cd][date_cd] == r_cd[1]:
profit = profit - self.pivoted_index_property_dfs[yield_cd][index_cd][date_cd] if math.isnan(self.pivoted_index_property_dfs[yield_cd][index_cd][date_cd]) == False else 0
# 매크로 상승, 지수 하락
elif self.pivoted_macro_property_shift_dfs[macro_type][macro_cd][date_cd] == r_cd[0] and self.pivoted_index_property_dfs[index_type][index_cd][date_cd] == r_cd[1]:
profit = profit + self.pivoted_index_property_dfs[yield_cd][index_cd][date_cd] if math.isnan(self.pivoted_index_property_dfs[yield_cd][index_cd][date_cd]) == False else 0
# 매크로 하락, 지수 상승
elif self.pivoted_macro_property_shift_dfs[macro_type][macro_cd][date_cd] == r_cd[1] and self.pivoted_index_property_dfs[index_type][index_cd][date_cd] == r_cd[0]:
profit = profit - self.pivoted_index_property_dfs[yield_cd][index_cd][date_cd] if math.isnan(self.pivoted_index_property_dfs[yield_cd][index_cd][date_cd]) == False else 0
self.relation_profit_dfs[key][macro_cd][index_cd] = profit
# 현재는 평균만 계산할 수 있음
def calc_matching_properties_weighted_statistic_ratio(self, type='mean', weights_info=None, r_cd=(1,-1), macro_type='momentum', index_type='direction'):
macro_index_key = macro_type+'_'+index_type
key = type if weights_info is None else type+'_'+weights_info[0]
weights = np.repeat(1 / self.macro_cnt, self.macro_cnt)
self.relation_dfs[macro_index_key][key] = pd.Series()
self.relation_right_dfs[macro_index_key][key] = pd.Series()
self.relation_wrong_dfs[macro_index_key][key] = pd.Series()
self.relation_up_dfs[macro_index_key][key] = pd.Series()
self.relation_down_dfs[macro_index_key][key] = pd.Series()
self.relation_up_right_dfs[macro_index_key][key] = pd.Series()
self.relation_down_right_dfs[macro_index_key][key] = pd.Series()
self.relation_up_wrong_dfs[macro_index_key][key] = pd.Series()
self.relation_down_wrong_dfs[macro_index_key][key] = pd.Series()
for index_cd in self.index_list:
weights = weights_info[1][index_cd] if weights_info is not None and weights_info[1] is not None else weights
up_right_cnt = 0
down_right_cnt = 0
up_wrong_cnt = 0
down_wrong_cnt = 0
for date_cd in self.index_timeseries:
relation_up_right = np.repeat(0, self.macro_cnt)
relation_down_right = np.repeat(0, self.macro_cnt)
relation_up_wrong = np.repeat(0, self.macro_cnt)
relation_down_wrong = np.repeat(0, self.macro_cnt)
for idx, macro_cd in enumerate(self.macro_list):
# 매크로 상승, 지수 상승
relation_up_right[idx] = self.relation_up_right_series[macro_index_key][macro_cd][index_cd][date_cd] if math.isnan(self.relation_up_right_series[macro_index_key][macro_cd][index_cd][date_cd]) == False else 0
# 매크로 하락, 지수 하락
relation_down_right[idx] = self.relation_down_right_series[macro_index_key][macro_cd][index_cd][date_cd] if math.isnan(self.relation_down_right_series[macro_index_key][macro_cd][index_cd][date_cd]) == False else 0
# 매크로 상승, 지수 하락
relation_up_wrong[idx] = self.relation_up_wrong_series[macro_index_key][macro_cd][index_cd][date_cd] if math.isnan(self.relation_up_wrong_series[macro_index_key][macro_cd][index_cd][date_cd]) == False else 0
# 매크로 하락, 지수 상승
relation_down_wrong[idx] = self.relation_down_wrong_series[macro_index_key][macro_cd][index_cd][date_cd] if math.isnan(self.relation_down_wrong_series[macro_index_key][macro_cd][index_cd][date_cd]) == False else 0
if type == 'mean':
weighted_count_list = [sum(relation_up_right*weights), sum(relation_down_right*weights), sum(relation_up_wrong*weights), sum(relation_down_wrong*weights)]
# max_index = weighted_count_list.index(max([abs(weighted_sum) for weighted_sum in weighted_count_list]))
max_index = 0
max_value = abs(weighted_count_list[0])
for idx, weighted_sum in enumerate(weighted_count_list):
if abs(weighted_sum) > max_value:
max_index = idx
max_value = abs(weighted_sum)
# 매크로 상승, 지수 상승
if max_index == 0:
up_right_cnt += r_cd[0]
# 매크로 하락, 지수 하락
elif max_index == 1:
down_right_cnt += r_cd[0]
# 매크로 상승, 지수 하락
elif max_index == 2:
up_wrong_cnt += r_cd[1]
# 매크로 하락, 지수 상승
elif max_index == 3:
down_wrong_cnt += r_cd[1]
self.relation_dfs[macro_index_key][key][index_cd] = (up_right_cnt+down_right_cnt+up_wrong_cnt+down_wrong_cnt) / self.index_len
self.relation_right_dfs[macro_index_key][key][index_cd] = (up_right_cnt+down_right_cnt) / self.index_len
self.relation_wrong_dfs[macro_index_key][key][index_cd] = (up_wrong_cnt+down_wrong_cnt) / self.index_len
self.relation_up_dfs[macro_index_key][key][index_cd] = (up_right_cnt+up_wrong_cnt) / self.index_len
self.relation_down_dfs[macro_index_key][key][index_cd] = (down_right_cnt+down_wrong_cnt) / self.index_len
self.relation_up_right_dfs[macro_index_key][key][index_cd] = up_right_cnt / self.index_len
self.relation_down_right_dfs[macro_index_key][key][index_cd] = down_right_cnt / self.index_len
self.relation_up_wrong_dfs[macro_index_key][key][index_cd] = up_wrong_cnt / self.index_len
self.relation_down_wrong_dfs[macro_index_key][key][index_cd] = down_wrong_cnt / self.index_len
# 현재는 평균만 계산할 수 있음
def set_matching_properties_weighted_statistic_series(self, type='mean', weights_info=None, threshold=0.0, macro_type='momentum', index_type='direction'):
macro_index_key = macro_type+'_'+index_type
key = type if weights_info is None else type+'_'+weights_info[0]
weights = np.repeat(1/self.macro_cnt, self.macro_cnt)
self.relation_series[macro_index_key][key] = pd.DataFrame(columns=self.index_list, index=self.index_timeseries)
self.relation_up_series[macro_index_key][key] = pd.DataFrame(columns=self.index_list, index=self.index_timeseries)
self.relation_down_series[macro_index_key][key] = pd.DataFrame(columns=self.index_list, index=self.index_timeseries)
self.relation_up_right_series[macro_index_key][key] = pd.DataFrame(columns=self.index_list, index=self.index_timeseries)
self.relation_down_right_series[macro_index_key][key] = pd.DataFrame(columns=self.index_list, index=self.index_timeseries)
self.relation_up_wrong_series[macro_index_key][key] = pd.DataFrame(columns=self.index_list, index=self.index_timeseries)
self.relation_down_wrong_series[macro_index_key][key] = pd.DataFrame(columns=self.index_list, index=self.index_timeseries)
for index_cd in self.index_list:
weights = weights_info[1][index_cd] if weights_info is not None and weights_info[1] is not None else weights
for date_cd in self.index_timeseries:
relation_up_right = np.repeat(0, self.macro_cnt)
relation_down_right = np.repeat(0, self.macro_cnt)
relation_up_wrong = np.repeat(0, self.macro_cnt)
relation_down_wrong = np.repeat(0, self.macro_cnt)
for idx, macro_cd in enumerate(self.macro_list):
# 매크로 상승, 지수 상승
relation_up_right[idx] = self.relation_up_right_series[macro_index_key][macro_cd][index_cd][date_cd] if math.isnan(self.relation_up_right_series[macro_index_key][macro_cd][index_cd][date_cd]) == False else 0
# 매크로 하락, 지수 하락
relation_down_right[idx] = self.relation_down_right_series[macro_index_key][macro_cd][index_cd][date_cd] if math.isnan(self.relation_down_right_series[macro_index_key][macro_cd][index_cd][date_cd]) == False else 0
# 매크로 상승, 지수 하락
relation_up_wrong[idx] = self.relation_up_wrong_series[macro_index_key][macro_cd][index_cd][date_cd] if math.isnan(self.relation_up_wrong_series[macro_index_key][macro_cd][index_cd][date_cd]) == False else 0
# 매크로 하락, 지수 상승
relation_down_wrong[idx] = self.relation_down_wrong_series[macro_index_key][macro_cd][index_cd][date_cd] if math.isnan(self.relation_down_wrong_series[macro_index_key][macro_cd][index_cd][date_cd]) == False else 0
if type == 'mean':
self.relation_series[macro_index_key][key][index_cd][date_cd] = round(sum(relation_up_right*weights)+sum(relation_down_right*weights)+sum(relation_up_wrong*weights)+sum(relation_down_wrong*weights), 2)
self.relation_up_series[macro_index_key][key][index_cd][date_cd] = round(sum(relation_up_right*weights)+sum(relation_down_wrong*weights), 2)
self.relation_down_series[macro_index_key][key][index_cd][date_cd] = round(sum(relation_down_right*weights)+sum(relation_up_wrong*weights), 2)
self.relation_up_right_series[macro_index_key][key][index_cd][date_cd] = round(sum(relation_up_right*weights), 2) if abs(sum(relation_up_right*weights)) > threshold else 0
self.relation_down_right_series[macro_index_key][key][index_cd][date_cd] = round(sum(relation_down_right*weights), 2) if abs(sum(relation_down_right*weights)) > threshold else 0
self.relation_up_wrong_series[macro_index_key][key][index_cd][date_cd] = round(sum(relation_up_wrong*weights), 2) if abs(sum(relation_up_wrong*weights)) > threshold else 0
self.relation_down_wrong_series[macro_index_key][key][index_cd][date_cd] = round(sum(relation_down_wrong*weights), 2) if abs(sum(relation_down_wrong*weights)) > threshold else 0
# 현재는 평균만 계산할 수 있음
def calc_matching_properties_weighted_statistic_profit(self, type='mean', weights_info=None, macro_type='momentum', index_type='direction'):
macro_index_key = macro_type+'_'+index_type
key = type if weights_info is None else type+'_'+weights_info[0]
yield_cd='yield'
weights = np.repeat(1 / self.macro_cnt, self.macro_cnt)
self.relation_profit_dfs[macro_index_key][key] = pd.Series()
for index_cd in self.index_list:
weights = weights_info[1][index_cd] if weights_info is not None and weights_info[1] is not None else weights
profit = 0
for date_cd in self.index_timeseries:
relation_up_right = np.repeat(0, self.macro_cnt)
relation_down_right = np.repeat(0, self.macro_cnt)
relation_up_wrong = np.repeat(0, self.macro_cnt)
relation_down_wrong = np.repeat(0, self.macro_cnt)
for idx, macro_cd in enumerate(self.macro_list):
# 매크로 상승, 지수 상승
relation_up_right[idx] = self.relation_up_right_series[macro_index_key][macro_cd][index_cd][date_cd] if math.isnan(self.relation_up_right_series[macro_index_key][macro_cd][index_cd][date_cd]) == False else 0
# 매크로 하락, 지수 하락
relation_down_right[idx] = self.relation_down_right_series[macro_index_key][macro_cd][index_cd][date_cd] if math.isnan(self.relation_down_right_series[macro_index_key][macro_cd][index_cd][date_cd]) == False else 0
# 매크로 상승, 지수 하락
relation_up_wrong[idx] = self.relation_up_wrong_series[macro_index_key][macro_cd][index_cd][date_cd] if math.isnan(self.relation_up_wrong_series[macro_index_key][macro_cd][index_cd][date_cd]) == False else 0
# 매크로 하락, 지수 상승
relation_down_wrong[idx] = self.relation_down_wrong_series[macro_index_key][macro_cd][index_cd][date_cd] if math.isnan(self.relation_down_wrong_series[macro_index_key][macro_cd][index_cd][date_cd]) == False else 0
if type == 'mean':
weighted_count_list = [sum(relation_up_right*weights), sum(relation_down_right*weights), sum(relation_up_wrong*weights), sum(relation_down_wrong*weights)]
#max_index = weighted_count_list.index(max([abs(weighted_sum) for weighted_sum in weighted_count_list]))
max_index = 0
max_value = abs(weighted_count_list[0])
for idx, weighted_sum in enumerate(weighted_count_list):
if abs(weighted_sum) > max_value:
max_index = idx
max_value = abs(weighted_sum)
# 매크로 상승, 지수 상승
# 매크로 상승, 지수 하락
if max_index == 0 or max_index == 2:
profit = profit+self.pivoted_index_property_dfs[yield_cd][index_cd][date_cd] if math.isnan(self.pivoted_index_property_dfs[yield_cd][index_cd][date_cd]) == False else 0
# 매크로 하락, 지수 하락
# 매크로 하락, 지수 상승
elif max_index == 1 or max_index == 2:
profit = profit - self.pivoted_index_property_dfs[yield_cd][index_cd][date_cd] if math.isnan(self.pivoted_index_property_dfs[yield_cd][index_cd][date_cd]) == False else 0
self.relation_profit_dfs[macro_index_key][key][index_cd] = profit
def save_log(self):
if platform.system() == 'Windows':
Wrap_Util.SaveExcelFiles(file='%s\\corr ratio.xlsx' % (base_dir)
, obj_dict={'relation_right_dfs(momentum_direction)': self.relation_right_dfs['momentum_direction']
, 'pivoted_macro_property(status)': self.pivoted_macro_property_dfs['status']
, 'pivoted_macro_property(momentum)': self.pivoted_macro_property_dfs['momentum']
, 'pivoted_index_property(direction)': self.pivoted_index_property_dfs['direction']
, 'pivoted_index_property(yield)': self.pivoted_index_property_dfs['yield']
, 'pivoted_index_value_df': self.pivoted_index_value_df
, 'pivoted_macro_value_df': self.pivoted_macro_value_df})
if 0:
panel = Figure()
for macro_cd in pivoted_macro_momentum_df.columns:
for index_cd in pivoted_index_value_df.columns:
macro_ctry =macro_master_df['ctry'][macro_cd]
macro_nm = macro_master_df['nm'][macro_cd]
index_nm = index_master_df['nm'][index_cd]
plot_df = pd.DataFrame()
plot_df[macro_cd] = pivoted_macro_status_df[macro_cd]
plot_df[index_cd] = pivoted_index_value_df[index_cd]
panel.draw(plot_df, title=macro_ctry+'_'+macro_nm, subplots=[index_cd], figsize=(10,5))
def do_figure(self, weights_info=None, each_factor=False, img_save=False):
panel = Figure()
panel_size = (20, 10)
sub_plot_row = 3
macro_index_key = 'momentum_direction'
macro_ctry = 'world'
macro_nm = 'mean'
macro_cd = macro_nm
panel.draw_multi_graph_with_matching_analysis(data=self.pivoted_index_value_df
, analysis=(self.relation_up_right_series[macro_index_key][macro_cd], self.relation_down_right_series[macro_index_key][macro_cd]
, -1*self.relation_up_wrong_series[macro_index_key][macro_cd], -1*self.relation_down_wrong_series[macro_index_key][macro_cd])
, anal_value=self.relation_right_dfs[macro_index_key][macro_cd], title=macro_ctry+'_'+macro_nm, figsize=panel_size, figshape=(sub_plot_row, math.ceil(self.index_cnt / sub_plot_row))
, ylim=(0,1), img_save=img_save)
#panel.draw_multi_graph_with_matching_analysis(data=self.pivoted_index_value_df, analysis=(self.relation_series[macro_index_key][macro_cd],), anal_value=self.relation_right_dfs[macro_index_key][macro_cd]
# , title=macro_ctry+'_'+macro_nm+'_single', figsize=panel_size, figshape=(sub_plot_row, math.ceil(self.index_cnt / sub_plot_row)), ylim=(-1,1), img_save=img_save)
if weights_info is not None:
macro_nm = 'mean'+'_'+weights_info[0]
macro_cd = macro_nm
panel.draw_multi_graph_with_matching_analysis(data=self.pivoted_index_value_df
, analysis=(self.relation_up_right_series[macro_index_key][macro_cd], self.relation_down_right_series[macro_index_key][macro_cd]
, -1*self.relation_up_wrong_series[macro_index_key][macro_cd], -1*self.relation_down_wrong_series[macro_index_key][macro_cd])
, anal_value=self.relation_right_dfs[macro_index_key][macro_cd], title=macro_ctry+'_'+macro_nm,figsize=panel_size, figshape=(sub_plot_row, math.ceil(self.index_cnt / sub_plot_row))
, ylim=(0,1), img_save=img_save)
#panel.draw_multi_graph_with_matching_analysis(data=self.pivoted_index_value_df , analysis=(self.relation_series[macro_index_key][macro_cd],), anal_value=self.relation_right_dfs[macro_index_key][macro_cd],
# title=macro_ctry+'_'+macro_nm+'_single', figsize=panel_size, figshape=(sub_plot_row, math.ceil(self.index_cnt / sub_plot_row)), ylim=(-1,1), img_save=img_save)
if each_factor == True:
for macro_cd in self.macro_list:
macro_ctry = self.macro_master_df['ctry'][macro_cd]
macro_nm = self.macro_master_df['nm'][macro_cd]
panel.draw_multi_graph_with_matching_analysis(data=self.pivoted_index_value_df
, analysis=(self.relation_up_right_series[macro_index_key][macro_cd], self.relation_down_right_series[macro_index_key][macro_cd]
, -1*self.relation_up_wrong_series[macro_index_key][macro_cd], -1*self.relation_down_wrong_series[macro_index_key][macro_cd])
, anal_value=self.relation_right_dfs[macro_index_key][macro_cd], title=macro_ctry+'_'+macro_nm, figsize=panel_size, figshape=(sub_plot_row, math.ceil(self.index_cnt/sub_plot_row))
, ylim=(0,1), img_save=img_save)
if __name__ == '__main__':
db = WrapDB()
db.connet(host="127.0.0.1", port=3306, database="macro_cycle", user="root", password="ryumaria")
ele = FinancialCycle(db)
# 선행 속성을 가지고 있는 매크로 데이터 리스트 읽기
ele.get_macro_master()
# 매크로 데이터의 시계열 값 읽기
ele.get_macro_value()
# 매크로 데이터의 기준값 대비 상태 확인
ele.set_macro_property(type='status')
# 매크로 데이터의 모멘텀 확인
ele.set_macro_property(type='momentum')
# 주요 국가별 지수 데이터 리스트 읽기
ele.get_index_master()
# 지수 데이터의 시계열 값 읽
ele.get_index_value()
# 지수 데이터의 방향성(상승, 하락) 상태 확인
ele.set_index_property(type='direction')
# 지수 데이터의 월단위 수익률 계산
ele.set_index_property(type='yield')
# 매크로 데이터의 기준값 대비 상태와 지수 데이터의 방향성이 동일한 경우 확인
ele.calc_matching_properties_ratio(macro_type='status', index_type='direction')
# 매크로 데이터의 모멘텀과 지수 데이터의 방향성이 동일한 경우 확인
ele.calc_matching_properties_ratio(macro_type='momentum', index_type='direction')
# 단일 매크로 데이터를 이용한 지수별 price action 누적 수익률 계산
ele.calc_matching_properties_profit(macro_type='momentum', index_type='direction')
if SC_LOG == True:
print("################## macro & index matching momentum ratio ##################")
for idx_col, index_cd in enumerate(ele.index_list):
if idx_col == 0:
txt_str = '\t'+str(list(ele.macro_master_df['nm'])).replace(',', '\t').replace('[','').replace(']','').replace("'",'')+'\n'
for idx_row, macro_cd in enumerate(ele.macro_list):
if idx_row == 0:
txt_str = txt_str+index_cd+':\t'
txt_str = txt_str+str(round(ele.relation_right_dfs['momentum_direction'][macro_cd][index_cd], 2))+'\t'
txt_str = txt_str+'\n'
print(txt_str)
ele.set_matching_properties_series(macro_type='momentum', index_type='direction')
# 매크로 데이터들의 평균 모멘텀 적용
ele.set_matching_properties_weighted_statistic_series(type='mean', threshold=0.5, macro_type='momentum', index_type='direction')
ele.calc_matching_properties_weighted_statistic_ratio(type='mean', macro_type='momentum', index_type='direction')
ele.calc_matching_properties_weighted_statistic_profit(type='mean', macro_type='momentum', index_type='direction')
if SC_LOG == True:
print("################## macros momentum & index direction matching equal weights ratio ##################")
for index_cd in ele.relation_right_dfs['momentum_direction'].index:
print(index_cd+':\t'+str(round(ele.relation_right_dfs['momentum_direction']['mean'][index_cd], 2)))
print("################## macros momentum & index direction matching equal weights profit ##################")
for index_cd in ele.relation_profit_dfs['momentum_direction'].index:
print(index_cd+':\t'+str(round(ele.relation_profit_dfs['momentum_direction']['mean'][index_cd], 2)))
# 지수별 최적화된 매크로 데이터들의 가중 평균 모멘텀 적용
# 결과 데이터들이 서로 연관되어 어떤 조합으로 최적화를 해도 동일한 결과 나옴
up_right_case = copy.deepcopy(ele.relation_up_right_series['momentum_direction'])
down_right_case = copy.deepcopy(ele.relation_down_right_series['momentum_direction'])
up_wrong_case = copy.deepcopy(ele.relation_up_wrong_series['momentum_direction'])
down_wrong_case = copy.deepcopy(ele.relation_down_wrong_series['momentum_direction'])
macro_list = copy.deepcopy(ele.macro_list)
index_list = copy.deepcopy(ele.index_list)
timeseries = copy.deepcopy(ele.index_timeseries)
weights_list = maximize_hit_ratio(up_right_case, down_right_case, up_wrong_case, down_wrong_case, macro_list, index_list, timeseries, lb=0.0, ub=0.5)
ele.set_matching_properties_weighted_statistic_series(type='mean', weights_info=('optimized', weights_list), threshold=0.5, macro_type='momentum', index_type='direction')
ele.calc_matching_properties_weighted_statistic_ratio(type='mean', weights_info=('optimized', weights_list), macro_type='momentum', index_type='direction')
ele.calc_matching_properties_weighted_statistic_profit(type='mean', weights_info=('optimized', weights_list), macro_type='momentum', index_type='direction')
if SC_LOG == True:
print("################## macros momentum & index direction matching optimized weights ratio ##################")
for index_cd in ele.relation_right_dfs['momentum_direction'].index:
print(index_cd+':\t'+str(round(ele.relation_right_dfs['momentum_direction']['mean_optimized'][index_cd], 2)))
print("################## macros momentum & index direction matching optimized weights profit ##################")
for index_cd in ele.relation_profit_dfs['momentum_direction'].index:
print(index_cd+':\t'+str(round(ele.relation_profit_dfs['momentum_direction']['mean_optimized'][index_cd], 2)))
print("################## optimized weights ##################")
print('\t'+str(list(ele.macro_master_df['nm'])).replace(',', '\t').replace('[','').replace(']','').replace("'",''))
for weights_cd in weights_list:
print(weights_cd+':\t'+str(weights_list[weights_cd]).replace(',', '\t').replace('[','').replace(']',''))
print("################## forecast macro's momentum ##################")
print(str(list(ele.macro_master_df['nm'])).replace(',', '\t').replace('[', '').replace(']','').replace("'", ''))
txt_str = ""
for macro_cd in macro_list:
txt_str = txt_str+str(ele.macro_last_df['momentum'][macro_cd].values[0])+'\t'
print(txt_str)
print("################## forecast index's direction ##################")
for weights_cd in weights_list:
print(weights_cd+':\t'+str(round(sum(weights_list[weights_cd]*ele.macro_last_df['momentum'].values[0]), 2)))
ele.do_figure(weights_info=('optimized', weights_list), each_factor=False, img_save=False)
ele.save_log()
db.disconnect()