-
Notifications
You must be signed in to change notification settings - Fork 5
/
random_forest.py
284 lines (230 loc) · 8.8 KB
/
random_forest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
#!/usr/bin/env python
from math import log, ceil, sqrt
import random
import time
import sys
DATASET = 'agaricus-lepiota.data'
ATTRIBUTES = 'agaricus-lepiota.names'
g_attributes = [] # Doesn't include poisonous or edible column
g_attributes_dictionary = {}
g_attributes_forest = []
class Node(object):
def __init__(self, children=None, attr=None):
if children is None:
children = []
self.children = children
self.attribute = attr
def __str__(self):
return str(self.attribute)
def print_tree(root):
print ''
print root.attribute
for i in root.children:
print '\t\t%s' % i.attribute
for j in i.children:
print '\t\t\t\t%s' % j.attribute
for k in j.children:
print '\t\t\t\t\t\t%s' % k.attribute
for l in k.children:
print '\t\t\t\t\t\t\t\t%s' % l.attribute
def parse_attributes():
with open(ATTRIBUTES, 'r+') as attributes_file:
for line in attributes_file:
pair = line.strip().split()
g_attributes.append(pair[0])
g_attributes_dictionary[pair[0]] = pair[1].split(',')
def make_forest_attributes():
while len(g_attributes_forest) < ceil(sqrt(len(g_attributes))):
random_choice = random.choice(g_attributes)
if not random_choice in g_attributes_forest:
g_attributes_forest.append(random_choice)
def prepare_datasets():
positive_dataset = []
negative_dataset = []
with open(DATASET, 'r+') as dataset_file:
for line in dataset_file:
attributes = line.split(',')
# Get rid of newline character on last attribute
attributes[-1] = attributes[-1].strip()
if attributes[0] == 'e':
positive_dataset.append(('e+', attributes[1:]))
else:
negative_dataset.append(('p-', attributes[1:]))
training_data = []
test_data = []
for i in range(int(min(len(positive_dataset),len(negative_dataset))/4)):
rcp = random.choice(positive_dataset)
rcn = random.choice(negative_dataset)
training_data.append(rcp)
training_data.append(rcn)
if not positive_dataset or not negative_dataset:
break
rcp = random.choice(positive_dataset)
rcn = random.choice(negative_dataset)
training_data.append(rcp)
training_data.append(rcn)
if not positive_dataset or not negative_dataset:
break
rcp = random.choice(positive_dataset)
rcn = random.choice(negative_dataset)
training_data.append(rcp)
training_data.append(rcn)
if not positive_dataset or not negative_dataset:
break
rcp = random.choice(positive_dataset)
rcn = random.choice(negative_dataset)
test_data.append(rcp)
test_data.append(rcn)
return training_data, test_data
# Entropy is used to determine which node to split next in the algorithm,
# the higher the entropy, the higher the potential to improve the classification here
def entropy(examples):
if len(examples) == 0:
return 0
positive_examples = [i for i in examples if i == 'e+']
negative_examples = [i for i in examples if i == 'p-']
if len(positive_examples) == 0 or len(negative_examples) == 0:
return 0
prob_pos = float(len(positive_examples))/float(len(examples))
prob_neg = float(len(negative_examples))/float(len(examples))
return (-1.0) * prob_pos * log(prob_pos, 2.0) - prob_neg * log(prob_neg, 2.0)
# Gain is computed to estimate the gain produced by a split over an attribute
def gain(examples, attribute):
if len(examples) == 0:
return 0
attr_values = g_attributes_dictionary[attribute]
sum = 0.0
examples_with_attr = []
for value in attr_values:
for entry in examples:
if entry[1][g_attributes.index(attribute)] == value:
examples_with_attr.append(entry[0])
entropy_examples_with_attr = entropy(examples_with_attr)
if entropy_examples_with_attr == 0:
return 0
else:
sum += float(len(examples_with_attr)) / float(len(examples) * float(entropy_examples_with_attr))
return entropy([i[0] for i in examples]) - sum
def ID3(examples, target_attribute, attributes):
# Create a root node for the tree
root = Node()
# If all examples are positive, Return the single-node tree Root, with label = e
if len([ex for ex in examples if ex[0] == 'p-']) == 0:
root.attribute = 'e+'
return root
# If all examples are negative, Return the single-node tree Root, with label = p
if len([ex for ex in examples if ex[0] == 'e+']) == 0:
root.attribute = 'p-'
return root
# If number of predicting attributes is empty, then Return the single node tree Root,
# with label = most common value of the target attribute in the examples
if len(attributes) == 0:
pos_count = 0
neg_count = 0
for ex in examples:
if ex[0] == 'e+':
pos_count += 1
else:
neg_count += 1
if pos_count >= neg_count:
root.attribute = 'e+'
else:
root.attribute = 'p-'
return root
else:
# The Attribute that best classifies examples
best_attr = (None, 0.0)
for attr in attributes:
attr_gain = gain(examples, attr)
if attr_gain <= best_attr[1]:
best_attr = (attr, attr_gain)
a = best_attr[0]
# Decision Tree attribute for Root = A
root.attribute = a
index_of_a = g_attributes.index(a)
possibles_values_of_a = g_attributes_dictionary[a]
# For each possible value of A
for val in possibles_values_of_a:
# Add a new tree branch below Root, corresponding to the test A = val
new_node = Node(attr=val)
root.children.append(new_node)
child = new_node
# Let Examples(val) be the subset of examples that have the value val for A
ex_with_val_for_a = []
for ex in examples:
if ex[1][index_of_a] == val:
ex_with_val_for_a.append(ex)
# If Examples(val) is empty
if len(ex_with_val_for_a) == 0:
pos_count = 0
neg_count = 0
for ex in examples:
if ex[0] == 'e+':
pos_count += 1
else:
neg_count += 1
leaf_node = Node()
if pos_count >= neg_count:
leaf_node.attribute = 'e+'
else:
leaf_node.attribute = 'p-'
child.children.append(leaf_node)
# Else below this new branch add the subtree for running ID3 without A
else:
attributes_copy = attributes[:]
attributes_copy.remove(a)
child.children.append(ID3(ex_with_val_for_a, target_attribute, attributes_copy))
return root
def classify(example, root):
if len(root.attribute) > 2:
current_attr_location = g_attributes.index(root.attribute)
for child in root.children:
if child.attribute == example[1][current_attr_location]:
return classify(example, child)
elif root.attribute == 'e+':
return 'e+'
elif root.attribute == 'p-':
return 'p-'
else:
return classify(example, root.children[0])
if __name__ == '__main__':
if len(sys.argv) != 2:
print 'Usage %s forest_size' % sys.argv[0]
exit(1)
forest_size = int(sys.argv[1])
start_time = time.time()
training_data, test_data = prepare_datasets()
parse_attributes()
trees = []
for i in range(forest_size):
make_forest_attributes()
training_data, unused_test_data = prepare_datasets()
trees.append(ID3(training_data, 'e+', g_attributes_forest[:]))
correct = 0
incorrect = 0
# print '--------'
result = None
for example in test_data:
positives = 0
negatives = 0
for tree in trees:
result = classify(example, tree)
if result == 'e+':
positives += 1
else:
negatives += 1
if positives >= negatives:
result = 'e+'
else:
result = 'p-'
# print result, example[0]
if result == example[0]:
correct += 1
else:
incorrect += 1
end_time = time.time()
percent_correct = 100.0 * float(correct)/(float(correct) + float(incorrect))
# print '%s correct, %s incorrect' % (correct, incorrect)
# print 'Percent correct: %s' % percent_correct
runtime = end_time - start_time
print runtime, percent_correct