-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathheterogenous_full_dataset.py
394 lines (326 loc) · 15.3 KB
/
heterogenous_full_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import json
binOps_training_data_paths = './binOps_training/binOps_training_150.json'
binOps_validation_data_paths = './binOps_eval/binOps_eval_150.json'
calls_training_data_paths = './calls_training/calls_training_150.json'
calls_validation_data_paths = './calls_eval/calls_eval_150.json'
token_vectors = None
type_vectors = None
node_type_vectors = None
binOps_training = None
binOps_eval = None
calls_training = None
with open('./token_to_vector/token_to_vector_150.json', encoding='utf-8') as f:
token_vectors = json.load(f)
with open('./type_to_vector.json', encoding='utf-8') as f:
type_vectors = json.load(f)
with open('./node_type_to_vector.json', encoding='utf-8') as f:
node_type_vectors = json.load(f)
with open(binOps_validation_data_paths, encoding='utf-8') as f:
binOps_eval = json.load(f)
with open(calls_validation_data_paths, encoding='utf-8') as f:
calls_eval = json.load(f)
with open(binOps_training_data_paths, encoding='utf-8') as f:
binOps_training = json.load(f)[:50000]
binOps_eval = binOps_eval[0:10000]
with open(calls_training_data_paths, encoding='utf-8') as f:
calls_training = json.load(f) + calls_eval[220000:]
calls_eval = calls_eval[0:220000]
print('Len of calls_training', len(calls_training))
print('Len of calls_eval', len(calls_eval))
print('Len of binOps_training', len(binOps_training))
print('Len of binOps_eval', len(binOps_eval))
### Create graph tuples of positive and negative examples from word2vec embeddings
import dgl
import os
import torch as th
import random
from dgl.data import DGLDataset
from dgl.data.utils import save_graphs, load_graphs
from collections import namedtuple
binOps_graph = {
('nodeType', 'precedes', 'nodeType') : ([0], [1]),
('nodeType', 'parent', 'token') : ([1, 1], [0, 1]),
('nodeType', 'parent', 'operator') : ([1,1], [0,0]),
('operator', 'parent', 'type') : ([0,0], [0,1]),
('type', 'typeOf', 'token') : ([0, 1], [0, 1]),
('token', 'follows', 'operator') : ([1], [0]),
('token', 'followedBy', 'operator') : ([0], [0])}
correct_calls_graph = {('token', 'precedes', 'token') : ([0], [1]),
('token', 'is_left_param_of', 'token') : ([1], [2]),
('token', 'is_right_param_of', 'token') : ([1], [3]),
('token', 'has_value_of', 'token') : ([2, 3], [4, 5]),
('token', 'has_value_type', 'type') : ([2, 3], [0, 1]),
('type', 'is_type_of', 'token') : ([0, 1], [4, 5]),
('token', 'follows', 'token') : ([4], [5])}
operator_embedding_size = 30
name_embedding_size = 200
type_embedding_size = 5
Operand = namedtuple('Operand', ['op', 'type'])
LABELS = {
'correct_binary_op': 0,
'incorrect_binary_operand': 1,
'incorrect_binary_operator': 2,
'correct_args': 3,
'swapped_args': 4
}
num_classes_map = {
'all': len(LABELS),
'binOps': 3,
'swapped_args': 2,
'incorrect_binary_operand': 2,
'incorrect_binary_operator': 2,
}
class FullCorrectAndBuggyDataset(DGLDataset):
def __init__(self, use_deepbugs_embeddings=True, is_training=True, bug_type='all'):
self.file_to_operands = dict()
self.all_operators = None
self.graphs = []
self.labels = []
self.use_deepbugs_embeddings = use_deepbugs_embeddings
self.is_training = is_training
self.bug_type = bug_type
super().__init__(name='synthetic')
## This is for determining all possible operator types to specify the length of operator vector
def pre_scan_binOps(self, first_data_paths, second_data_paths=[]):
all_operators_set = set()
for bin_op in first_data_paths:
file = bin_op['src'].split(' : ')[0]
operands = self.file_to_operands.setdefault(file, set())
left_operand = Operand(bin_op['left'], bin_op['leftType'])
right_operand = Operand(bin_op['right'], bin_op['rightType'])
operands.add(left_operand)
operands.add(right_operand)
all_operators_set.add(bin_op['op'])
if second_data_paths == []:
self.all_operators = list(all_operators_set)
return
for bin_op in second_data_paths:
file = bin_op['src'].split(' : ')[0]
operands = self.file_to_operands.setdefault(file, set())
left_operand = Operand(bin_op['left'], bin_op['leftType'])
right_operand = Operand(bin_op['right'], bin_op['rightType'])
operands.add(left_operand)
operands.add(right_operand)
all_operators_set.add(bin_op['op'])
self.all_operators = list(all_operators_set)
def generate_random_embedding(self, num_nodes):
return th.randn(num_nodes, name_embedding_size)
def get_tensor_feature(self, data):
max_len = max([x.squeeze().numel() for x in data])
# pad all tensors to have same length
data = [th.nn.functional.pad(x, pad=(0, max_len - x.numel()), mode='constant', value=0) for x in data]
# stack them
return th.stack(data)
def get_padded_node_features_by_max(self, data):
max_len = name_embedding_size
data = [th.nn.functional.pad(x, pad=(0, max_len - x.numel()), mode='constant', value=0) for x in data]
return th.stack(data)
def generate_graphs_from_binOps_ast(self):
num_nodes = 7
dataset = binOps_training if self.is_training else binOps_eval
for data in dataset:
left = data['left']
right = data['right']
operator = data['op']
left_type = data['leftType']
right_type = data['rightType']
parent = data['parent']
grand_parent = data['grandParent']
src = data['src']
if not (left in token_vectors):
continue
if not (right in token_vectors):
continue
operator_vector = [0] * operator_embedding_size
operator_vector[self.all_operators.index(operator)] = 1
g = dgl.heterograph(binOps_graph)
g.nodes['nodeType'].data['features'] = self.get_padded_node_features_by_max([
th.tensor(node_type_vectors[grand_parent]),
th.tensor(node_type_vectors[parent]),
])
g.nodes['type'].data['features'] = self.get_padded_node_features_by_max([
th.tensor(type_vectors[left_type]),
th.tensor(type_vectors[right_type]),
])
g.nodes['token'].data['features'] = self.get_padded_node_features_by_max([
th.tensor(token_vectors[left]),
th.tensor(token_vectors[right])
])
g.nodes['operator'].data['features'] = self.get_padded_node_features_by_max([
th.tensor(operator_vector)
])
# hg = dgl.to_homogeneous(g, ndata=['features'])
self.graphs.append(g)
self.labels.append(LABELS['correct_binary_op'])
## Incorrect binary operator
if self.bug_type == 'incorrect_binary_operator' or self.bug_type == 'binOps':
other_operator = None
other_operator_vector = None
while other_operator_vector == None:
other_operator = random.choice(self.all_operators)
if other_operator != operator:
other_operator_vector = [0] * operator_embedding_size
other_operator_vector[self.all_operators.index(
other_operator)] = 1
g = dgl.heterograph(binOps_graph)
g.nodes['nodeType'].data['features'] = self.get_padded_node_features_by_max([
th.tensor(node_type_vectors[grand_parent]),
th.tensor(node_type_vectors[parent]),
])
g.nodes['type'].data['features'] = self.get_padded_node_features_by_max([
th.tensor(type_vectors[left_type]),
th.tensor(type_vectors[right_type]),
])
g.nodes['token'].data['features'] = self.get_padded_node_features_by_max([
th.tensor(token_vectors[left]),
th.tensor(token_vectors[right])
])
g.nodes['operator'].data['features'] = self.get_padded_node_features_by_max([
th.tensor(other_operator_vector)
])
# hg = dgl.to_homogeneous(g, ndata=['features'])
self.graphs.append(g)
self.labels.append(LABELS['incorrect_binary_operator'] if self.bug_type == 'binOps' else 1)
## Wrong binary operand
if self.bug_type == 'incorrect_binary_operand' or self.bug_type == 'binOps':
replace_left = random.random() < 0.5
if replace_left:
to_replace_operand = left
else:
to_replace_operand = right
file = src.split(' : ')[0]
all_operands = self.file_to_operands[file]
tries_left = 100
found = False
while (not found) and tries_left > 0:
other_operand = random.choice(list(all_operands))
if other_operand.op in token_vectors and other_operand.op != to_replace_operand:
found = True
tries_left -= 1
if not found:
return
other_operand_vector = token_vectors[other_operand.op]
other_operand_type_vector = type_vectors[other_operand.type]
g = dgl.heterograph(binOps_graph)
g.nodes['nodeType'].data['features'] = self.get_padded_node_features_by_max([
th.tensor(node_type_vectors[grand_parent]),
th.tensor(node_type_vectors[parent]),
])
if replace_left:
g.nodes['type'].data['features'] = self.get_padded_node_features_by_max([
th.tensor(other_operand_type_vector),
th.tensor(type_vectors[right_type]),
])
g.nodes['token'].data['features'] = self.get_padded_node_features_by_max([
th.tensor(other_operand_vector),
th.tensor(token_vectors[right])
])
else:
g.nodes['type'].data['features'] = self.get_padded_node_features_by_max([
th.tensor(type_vectors[left_type]),
th.tensor(other_operand_type_vector),
])
g.nodes['token'].data['features'] = self.get_padded_node_features_by_max([
th.tensor(token_vectors[left]),
th.tensor(other_operand_vector)
])
g.nodes['operator'].data['features'] = self.get_padded_node_features_by_max([
th.tensor(operator_vector)
])
# hg = dgl.to_homogeneous(g, ndata=['features'])
self.graphs.append(g)
self.labels.append(LABELS['incorrect_binary_operand'] if self.bug_type == 'binOps' else 1)
def generate_graphs_from_calls_ast(self):
num_nodes = 8
dataset = calls_training if self.is_training else calls_eval
for call in dataset:
arguments = call['arguments']
if len(arguments) != 2:
continue
callee_string = call['callee']
argument_strings = call['arguments']
if not (callee_string in token_vectors):
continue
not_found = False
for argument_string in argument_strings:
if not (argument_string in token_vectors):
not_found = True
if not_found:
continue
callee_vector = token_vectors[callee_string]
argument0_vector = token_vectors[argument_strings[0]]
argument1_vector = token_vectors[argument_strings[1]]
base_string = call['base']
base_vector = token_vectors.get(base_string, [0] * name_embedding_size)
argument_type_strings = call['argumentTypes']
argument0_type_vector = type_vectors.get(
argument_type_strings[0], [0] * type_embedding_size)
argument1_type_vector = type_vectors.get(
argument_type_strings[1], [0] * type_embedding_size)
parameter_strings = call['parameters']
parameter0_vector = token_vectors.get(
parameter_strings[0], [0] * name_embedding_size)
parameter1_vector = token_vectors.get(
parameter_strings[1], [0] * name_embedding_size)
g = dgl.heterograph(correct_calls_graph)
g.nodes['token'].data['features'] = self.get_padded_node_features_by_max([
th.tensor(base_vector),
th.tensor(callee_vector),
th.tensor(parameter0_vector),
th.tensor(parameter1_vector),
th.tensor(argument0_vector),
th.tensor(argument1_vector),
])
g.nodes['type'].data['features'] = self.get_padded_node_features_by_max([
th.tensor(argument0_type_vector),
th.tensor(argument1_type_vector),
])
# hg = dgl.to_homogeneous(g, ndata=['features'])
self.graphs.append(g)
self.labels.append(LABELS['correct_args'] if self.bug_type == 'all' else 0)
## Swapped args
g = dgl.heterograph(correct_calls_graph)
g.nodes['token'].data['features'] = self.get_padded_node_features_by_max([
th.tensor(base_vector),
th.tensor(callee_vector),
th.tensor(parameter0_vector),
th.tensor(parameter1_vector),
th.tensor(argument1_vector),
th.tensor(argument0_vector),
])
g.nodes['type'].data['features'] = self.get_padded_node_features_by_max([
th.tensor(argument1_type_vector),
th.tensor(argument0_type_vector),
])
self.graphs.append(g)
self.labels.append(LABELS['swapped_args'] if self.bug_type == 'all' else 1)
@property
def dataset_type(self):
return 'training' if self.is_training else 'eval'
def process(self):
filepath = './data/full_hetero_graph_data_{}_{}_{}.bin'.format(
self.dataset_type,
'deepbugs' if self.use_deepbugs_embeddings else 'random',
self.bug_type
)
if os.path.exists(filepath):
print('----Loading {} graph data----'.format(self.dataset_type))
self.graphs, label_dict = load_graphs(filepath)
self.labels = label_dict['labels']
else:
print('----Saving {} graph data----'.format(self.dataset_type))
if self.bug_type == 'swapped_args':
self.generate_graphs_from_calls_ast()
else:
self.pre_scan_binOps(binOps_training, binOps_eval)
self.generate_graphs_from_binOps_ast()
self.labels = th.LongTensor(self.labels)
save_graphs(filepath, self.graphs, {'labels': self.labels})
def __getitem__(self, i):
return self.graphs[i], self.labels[i]
def __len__(self):
return len(self.graphs)
@property
def num_classes(self):
"""Number of classes."""
return num_classes_map[self.bug_type]