You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
When I'm training on the coco as the README declared,I meet this problem just like the blod log,and then the NMSLoss_pos and the NMSLoss_neg become nan,does anyone meet the same problem and give me some help?
If you encounter NaN, please try more times until there is no NaN. Some random initialization might cause divergence problem. If problem still exists, it might because the base lr is too large for your task. In this case, please use a smaller base lr.
When I'm training on the coco as the README declared,I meet this problem just like the blod log,and then the NMSLoss_pos and the NMSLoss_neg become nan,does anyone meet the same problem and give me some help?
('lr', 0.0005, 'lr_epoch_diff', [5.33], 'lr_iters', [625027])
Epoch[0] Batch [100] Speed: 5.08 samples/sec Train-RPNAcc=0.847250, RPNLogLoss=0.376764, RPNL1Loss=0.187504, RCNNAcc=0.801361, RCNNLogLoss=1.674762, RCNNL1Loss=0.311297, NMSLoss_pos=0.035744, NMSLoss_neg=0.016391, NMSAcc_pos=0.000000, NMSAcc_neg=1.000000,
Epoch[0] Batch [200] Speed: 5.10 samples/sec Train-RPNAcc=0.865089, RPNLogLoss=0.328289, RPNL1Loss=0.176516, RCNNAcc=0.811237, RCNNLogLoss=1.380794, RCNNL1Loss=0.316205, NMSLoss_pos=0.048681, NMSLoss_neg=0.013534, NMSAcc_pos=0.000000, NMSAcc_neg=1.000000,
Epoch[0] Batch [300] Speed: 5.11 samples/sec Train-RPNAcc=0.874916, RPNLogLoss=0.302038, RPNL1Loss=0.159570, RCNNAcc=0.802546, RCNNLogLoss=1.319950, RCNNL1Loss=0.352934, NMSLoss_pos=0.057433, NMSLoss_neg=0.013499, NMSAcc_pos=0.000000, NMSAcc_neg=1.000000,
experiments/relation_rcnn/../../relation_rcnn/../lib/bbox/bbox_transform.py:128: RuntimeWarning: overflow encountered in exp
pred_w = np.exp(dw) * widths[:, np.newaxis]
experiments/relation_rcnn/../../relation_rcnn/../lib/bbox/bbox_transform.py:129: RuntimeWarning: overflow encountered in exp
pred_h = np.exp(dh) * heights[:, np.newaxis]
experiments/relation_rcnn/../../relation_rcnn/../lib/bbox/bbox_transform.py:133: RuntimeWarning: invalid value encountered in subtract
pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * (pred_w - 1.0)
experiments/relation_rcnn/../../relation_rcnn/../lib/bbox/bbox_transform.py:135: RuntimeWarning: invalid value encountered in subtract
pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * (pred_h - 1.0)
experiments/relation_rcnn/../../relation_rcnn/../lib/bbox/bbox_transform.py:137: RuntimeWarning: invalid value encountered in add
pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * (pred_w - 1.0)
experiments/relation_rcnn/../../relation_rcnn/../lib/bbox/bbox_transform.py:139: RuntimeWarning: invalid value encountered in add
pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * (pred_h - 1.0)
experiments/relation_rcnn/../../relation_rcnn/operator_py/proposal.py:180: RuntimeWarning: invalid value encountered in greater_equal
keep = np.where((ws >= min_size) & (hs >= min_size))[0]
Epoch[0] Batch [400] Speed: 5.02 samples/sec Train-RPNAcc=0.871289, RPNLogLoss=nan, RPNL1Loss=nan, RCNNAcc=0.810123, RCNNLogLoss=1.576645, RCNNL1Loss=0.334166, NMSLoss_pos=0.054120, NMSLoss_neg=nan, NMSAcc_pos=0.000000, NMSAcc_neg=0.999650,
Epoch[0] Batch [500] Speed: 4.91 samples/sec Train-RPNAcc=0.859804, RPNLogLoss=nan, RPNL1Loss=nan, RCNNAcc=0.836702, RCNNLogLoss=1.888214, RCNNL1Loss=0.267614, NMSLoss_pos=nan, NMSLoss_neg=nan, NMSAcc_pos=0.000000, NMSAcc_neg=0.999720,
Epoch[0] Batch [600] Speed: 4.99 samples/sec Train-RPNAcc=0.850682, RPNLogLoss=nan, RPNL1Loss=nan, RCNNAcc=0.853031, RCNNLogLoss=1.725999, RCNNL1Loss=0.223882, NMSLoss_pos=nan, NMSLoss_neg=nan, NMSAcc_pos=0.000000, NMSAcc_neg=0.999767,
Epoch[0] Batch [700] Speed: 4.98 samples/sec Train-RPNAcc=0.844466, RPNLogLoss=nan, RPNL1Loss=nan, RCNNAcc=0.865544, RCNNLogLoss=1.547918, RCNNL1Loss=0.192278, NMSLoss_pos=nan, NMSLoss_neg=nan, NMSAcc_pos=0.000000, NMSAcc_neg=0.999800,
The text was updated successfully, but these errors were encountered: