forked from PRBonn/semantic-kitti-api
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_semantics_by_distance.py
executable file
·274 lines (242 loc) · 8.83 KB
/
evaluate_semantics_by_distance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#!/usr/bin/env python3
# This file is covered by the LICENSE file in the root of this project.
import argparse
import os
import yaml
import sys
import numpy as np
DISTANCES = [(1e-8, 10.0),
(10.0, 20.0),
(20.0, 30.0),
(30.0, 40.0),
(40.0, 50.0)]
# possible splits
splits = ["train", "valid", "test"]
# possible backends
backends = ["numpy", "torch"]
if __name__ == '__main__':
parser = argparse.ArgumentParser("./evaluate_semantics_by_distance.py")
parser.add_argument(
'--dataset', '-d',
type=str,
required=True,
help='Dataset dir. No Default',
)
parser.add_argument(
'--predictions', '-p',
type=str,
required=None,
help='Prediction dir. Same organization as dataset, but predictions in'
'each sequences "prediction" directory. No Default. If no option is set'
' we look for the labels in the same directory as dataset'
)
parser.add_argument(
'--split', '-s',
type=str,
required=False,
default="valid",
help='Split to evaluate on. One of ' +
str(splits) + '. Defaults to %(default)s',
)
parser.add_argument(
'--backend', '-b',
type=str,
required=False,
default="numpy",
help='Backend for evaluation. One of ' +
str(backends) + ' Defaults to %(default)s',
)
parser.add_argument(
'--datacfg', '-dc',
type=str,
required=False,
default="config/semantic-kitti.yaml",
help='Dataset config file. Defaults to %(default)s',
)
parser.add_argument(
'--limit', '-l',
type=int,
required=False,
default=None,
help='Limit to the first "--limit" points of each scan. Useful for'
' evaluating single scan from agregated pointcloud.'
' Defaults to %(default)s',
)
parser.add_argument(
'--codalab',
dest='codalab',
default=False,
action='store_true',
help='Exports "segmentation_scores_distance.txt" for codalab'
'Defaults to %(default)s',
)
FLAGS, unparsed = parser.parse_known_args()
# fill in real predictions dir
if FLAGS.predictions is None:
FLAGS.predictions = FLAGS.dataset
# print summary of what we will do
print("*" * 80)
print("INTERFACE:")
print("Data: ", FLAGS.dataset)
print("Predictions: ", FLAGS.predictions)
print("Backend: ", FLAGS.backend)
print("Split: ", FLAGS.split)
print("Config: ", FLAGS.datacfg)
print("Limit: ", FLAGS.limit)
print("Codalab: ", FLAGS.codalab)
print("*" * 80)
# assert split
assert(FLAGS.split in splits)
# assert backend
assert(FLAGS.backend in backends)
print("Opening data config file %s" % FLAGS.datacfg)
DATA = yaml.safe_load(open(FLAGS.datacfg, 'r'))
# get number of interest classes, and the label mappings
class_strings = DATA["labels"]
class_remap = DATA["learning_map"]
class_inv_remap = DATA["learning_map_inv"]
class_ignore = DATA["learning_ignore"]
nr_classes = len(class_inv_remap)
# make lookup table for mapping
maxkey = max(class_remap.keys())
# +100 hack making lut bigger just in case there are unknown labels
remap_lut = np.zeros((maxkey + 100), dtype=np.int32)
remap_lut[list(class_remap.keys())] = list(class_remap.values())
# print(remap_lut)
# create evaluator
ignore = []
for cl, ign in class_ignore.items():
if ign:
x_cl = int(cl)
ignore.append(x_cl)
print("Ignoring xentropy class ", x_cl, " in IoU evaluation")
# create evaluator
evaluators = []
for i in range(len(DISTANCES)):
if FLAGS.backend == "torch":
from auxiliary.torch_ioueval import iouEval
evaluators.append(iouEval(nr_classes, ignore))
evaluators[i].reset()
elif FLAGS.backend == "numpy":
from auxiliary.np_ioueval import iouEval
evaluators.append(iouEval(nr_classes, ignore))
evaluators[i].reset()
else:
print("Backend for evaluator should be one of ", str(backends))
quit()
# get test set
test_sequences = DATA["split"][FLAGS.split]
# get scan paths
scan_names = []
for sequence in test_sequences:
sequence = '{0:02d}'.format(int(sequence))
label_paths = os.path.join(FLAGS.dataset, "sequences",
str(sequence), "velodyne")
# populate the label names
seq_scan_names = [os.path.join(dp, f) for dp, dn, fn in os.walk(
os.path.expanduser(label_paths)) for f in fn if ".bin" in f]
seq_scan_names.sort()
scan_names.extend(seq_scan_names)
# print(scan_names)
# get label paths
label_names = []
for sequence in test_sequences:
sequence = '{0:02d}'.format(int(sequence))
label_paths = os.path.join(FLAGS.dataset, "sequences",
str(sequence), "labels")
# populate the label names
seq_label_names = [os.path.join(dp, f) for dp, dn, fn in os.walk(
os.path.expanduser(label_paths)) for f in fn if ".label" in f]
seq_label_names.sort()
label_names.extend(seq_label_names)
# print(label_names)
# get predictions paths
pred_names = []
for sequence in test_sequences:
sequence = '{0:02d}'.format(int(sequence))
pred_paths = os.path.join(FLAGS.predictions, "sequences",
sequence, "predictions")
# populate the label names
seq_pred_names = [os.path.join(dp, f) for dp, dn, fn in os.walk(
os.path.expanduser(pred_paths)) for f in fn if ".label" in f]
seq_pred_names.sort()
pred_names.extend(seq_pred_names)
# print(pred_names)
# check that I have the same number of files
print("scans", len(scan_names))
print("labels: ", len(label_names))
print("predictions: ", len(pred_names))
assert(len(label_names) == len(pred_names) and
len(scan_names) == len(label_names))
# open each file, get the tensor, and make the iou comparison
for scan_file, label_file, pred_file in zip(scan_names, label_names, pred_names):
print("evaluating scan ", scan_file)
# open scan
scan = np.fromfile(scan_file, dtype=np.float32)
scan = scan.reshape((-1, 4)) # reshape to matrix
if FLAGS.limit is not None:
scan = scan[:FLAGS.limit] # limit to desired length
depth = np.linalg.norm(scan, 2, axis=1) # get depth to filter by distance
# open label
label = np.fromfile(label_file, dtype=np.int32)
label = label.reshape((-1)) # reshape to vector
label = label & 0xFFFF # get lower half for semantics
if FLAGS.limit is not None:
label = label[:FLAGS.limit] # limit to desired length
label = remap_lut[label] # remap to xentropy format
# open prediction
pred = np.fromfile(pred_file, dtype=np.int32)
pred = pred.reshape((-1)) # reshape to vector
pred = pred & 0xFFFF # get lower half for semantics
if FLAGS.limit is not None:
pred = pred[:FLAGS.limit] # limit to desired length
pred = remap_lut[pred] # remap to xentropy format
# evaluate for all distances
for idx in range(len(DISTANCES)):
# select by range
lrange = DISTANCES[idx][0]
hrange = DISTANCES[idx][1]
mask = np.logical_and(depth > lrange, depth < hrange)
# mask by distance
# mask_depth = depth[mask]
# print("mask range, ", mask_depth.max(), mask_depth.min())
mask_label = label[mask]
mask_pred = pred[mask]
# add single scan to evaluation
evaluators[idx].addBatch(mask_pred, mask_label)
# print for all ranges
print("*" * 80)
for idx in range(len(DISTANCES)):
# when I am done, print the evaluation
m_accuracy = evaluators[idx].getacc()
m_jaccard, class_jaccard = evaluators[idx].getIoU()
# print for spreadsheet
sys.stdout.write('range {lrange}m to {hrange}m,'.format(lrange=DISTANCES[idx][0],
hrange=DISTANCES[idx][1]))
for i, jacc in enumerate(class_jaccard):
if i not in ignore:
sys.stdout.write('{jacc:.3f}'.format(jacc=jacc.item()))
sys.stdout.write(",")
sys.stdout.write('{jacc:.3f}'.format(jacc=m_jaccard.item()))
sys.stdout.write(",")
sys.stdout.write('{acc:.3f}'.format(acc=m_accuracy.item()))
sys.stdout.write('\n')
sys.stdout.flush()
# if codalab is necessary, then do it
if FLAGS.codalab:
results = {}
for idx in range(len(DISTANCES)):
# make string for distance
d_str = str(DISTANCES[idx][-1])+"m_"
# get values for this distance range
m_accuracy = evaluators[idx].getacc()
m_jaccard, class_jaccard = evaluators[idx].getIoU()
# put in dictionary
results[d_str+"accuracy_mean"] = float(m_accuracy)
results[d_str+"iou_mean"] = float(m_jaccard)
for i, jacc in enumerate(class_jaccard):
if i not in ignore:
results[d_str+"iou_"+class_strings[class_inv_remap[i]]] = float(jacc)
# save to file
with open('segmentation_scores_distance.txt', 'w') as yaml_file:
yaml.dump(results, yaml_file, default_flow_style=False)