-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlist_experiments.sh
145 lines (119 loc) · 7.57 KB
/
list_experiments.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#!/bin/bash
# -M is the model
# options are fcn, deeplab and gcn
# don't use the gcn option. we haven't test it properly
# -e are the excluded classes
# this will typically be only #6 (mouth-mask) or none
# -bs is the model batch size
# -Vs is the validation set ID
# depending on the experiment we will either use a validation set or another
# in particular, if we are testing for (only) sunglasses augmentation
# we have a validation set with half the images with sunglasses from ELFW. etc.
# 0 is for sunglasses
# 1 is for hands
# 2 is a general validation set with random images
# -S synthetic augmentation ratio
# it has to be positive and is the ratio of training images that are used from the
# augmentation folders (next parameter)
# if there are 90 images in the train set and we set -S 0.1 we are asking for 90*0.1=9 (synthethically) augmented images
# these images are taken from the augmentation folders uniformly, this is, if there is 1 folder, the 9 are taken from it
# if there are 2 folders, we take int(9/2) from 1 and int(9/2) from the other,
# if there are 3 folders, we take int(9/3) from 1, int(9/3) from the second one and int(9/3) from the last one
# -St is the augmentation types configuration
# 0 is for Sunglasses
# 1 is for Hands
# 2 is for Masks
# we can combine them as we with, for example, -St 0,1,2 or -St 0 or -St 1,2
# be sure you give the numbers in increasing ordre. nothing bad will happen but the -St 1,2 and -St 2,1 experiments are
# technically the same although it won't be handled
##################################
# LIST OF EXPERIMENTS
#
# Sunglasses augmentations:
# * St will only be "-St 0"
# * we exclude the mouth-mask class, so always "-e 6"
# * the model is either fcn or deeplab
# * batch size will depend on the GPU capacity. for the fcn is 16, deeplab is a little lighter so 16 will be ok
# * Validation set will be "-Vs 0"
# * Different augmentation ratios "-S x" for x in [0, 0.25, 0.5, 0.75, 1] (for -S 0, -St is none)
#
# Hands augmentations:
# * St will only be "-St 1"
# * we exclude the mouth-mask class, so always "-e 6"
# * the model is either fcn or deeplab
# * batch size will depend on the GPU capacity. for the fcn is 16, deeplab is a little lighter so 16 will be ok
# * Validation set will be "-Vs 1"
# * Different augmentation ratios "-S x" for x in [0, 0.25, 0.5, 0.75, 1] (for -S 0, -St is none)
#
# All types of augmentations:
# * St will be "-St 0,1,2"
# * we have all classes so -e is none: problem here, evaluation will consider mouth-masks although there is none in the validation set
# * the model is either fcn or deeplab
# * batch size will depend on the GPU capacity. for the fcn is 16, deeplab is a little lighter so 16 will be ok
# * Validation set will be "-Vs 2"
# * Different augmentation ratios "-S x" for x in [0, 0.25, 0.5, 0.75, 1] (for -S 0, -St is none)
# Sunglasses augmentations
# these first 4 exps will have different names
[2.55] python pytorch-segmentation/run_trainer.py -M fcn -bs 16 -e 6 -Vs 0 #
[3.21] python pytorch-segmentation/run_trainer.py -M fcn -bs 16 -e 6 -Vs 0 -St 0 -S 0.25 #
[3.85] python pytorch-segmentation/run_trainer.py -M fcn -bs 16 -e 6 -Vs 0 -St 0 -S 0.5 #
[5.13] python pytorch-segmentation/run_trainer.py -M fcn -bs 16 -e 6 -Vs 0 -St 0 -S 1.0 #
python pytorch-segmentation/run_trainer.py -M deeplab -bs 16 -e 6 -Vs 0
python pytorch-segmentation/run_trainer.py -M deeplab -bs 16 -e 6 -Vs 0 -St 0 -S 0.25
python pytorch-segmentation/run_trainer.py -M deeplab -bs 16 -e 6 -Vs 0 -St 0 -S 0.5
python pytorch-segmentation/run_trainer.py -M deeplab -bs 16 -e 6 -Vs 0 -St 0 -S 1.0
# Hands augmentations
python pytorch-segmentation/run_trainer.py -M fcn -bs 16 -e 6 -Vs 1
python pytorch-segmentation/run_trainer.py -M fcn -bs 16 -e 6 -Vs 1 -St 1 -S 0.25
python pytorch-segmentation/run_trainer.py -M fcn -bs 16 -e 6 -Vs 1 -St 1 -S 0.5
python pytorch-segmentation/run_trainer.py -M fcn -bs 16 -e 6 -Vs 1 -St 1 -S 1.0
python pytorch-segmentation/run_trainer.py -M deeplab -bs 16 -e 6 -Vs 1
python pytorch-segmentation/run_trainer.py -M deeplab -bs 16 -e 6 -Vs 1 -St 1 -S 0.25
python pytorch-segmentation/run_trainer.py -M deeplab -bs 16 -e 6 -Vs 1 -St 1 -S 0.5
python pytorch-segmentation/run_trainer.py -M deeplab -bs 16 -e 6 -Vs 1 -St 1 -S 1.0
# All augmentations - mouth-masks included (for webcam validation - results on val set won't be reported!)
# results will only be qualitative so we only train a single model
python pytorch-segmentation/run_trainer.py -M fcn -bs 16 -Vs 2 -St 0,1,2 -S 0.5
# All augmentations - mouth-masks excluded (for validating that several augmentations also help)
python pytorch-segmentation/run_trainer.py -M fcn -bs 16 -e 6 -Vs 2
python pytorch-segmentation/run_trainer.py -M fcn -bs 16 -e 6 -Vs 2 -St 0,1 -S 0.25
python pytorch-segmentation/run_trainer.py -M fcn -bs 16 -e 6 -Vs 2 -St 0,1 -S 0.5
python pytorch-segmentation/run_trainer.py -M fcn -bs 16 -e 6 -Vs 2 -St 0,1 -S 1.0
python pytorch-segmentation/run_trainer.py -M deeplab -bs 16 -e 6 -Vs 2
python pytorch-segmentation/run_trainer.py -M deeplab -bs 16 -e 6 -Vs 2 -St 0,1 -S 0.25
python pytorch-segmentation/run_trainer.py -M deeplab -bs 16 -e 6 -Vs 2 -St 0,1 -S 0.5
python pytorch-segmentation/run_trainer.py -M deeplab -bs 16 -e 6 -Vs 2 -St 0,1 -S 1.0
# Sort them all!
# @ GPU0
[3.85] python pytorch-segmentation/run_trainer.py -M fcn -bs 16 -e 6 -Vs 2 -St 0,1 -S 0.5
[3.21] python pytorch-segmentation/run_trainer.py -M fcn -bs 16 -e 6 -Vs 1 -St 1 -S 0.25
[5.13] python pytorch-segmentation/run_trainer.py -M fcn -bs 16 -e 6 -Vs 0 -St 0 -S 1.0 #
[4.84] python pytorch-segmentation/run_trainer.py -M deeplab -bs 16 -e 6 -Vs 0 -St 0 -S 0.25
[5.81] python pytorch-segmentation/run_trainer.py -M deeplab -bs 16 -e 6 -Vs 0 -St 0 -S 0.5
[5.81] python pytorch-segmentation/run_trainer.py -M deeplab -bs 16 -e 6 -Vs 2 -St 0,1 -S 0.5
#Total time = 3.85+3.21+4.84+5.81+5.81+5.13=28.65
# @ GPU1
[3.21] python pytorch-segmentation/run_trainer.py -M fcn -bs 16 -e 6 -Vs 0 -St 0 -S 0.25 #
[5.13] python pytorch-segmentation/run_trainer.py -M fcn -bs 16 -e 6 -Vs 1 -St 1 -S 1.0
[3.85] python pytorch-segmentation/run_trainer.py -M fcn -bs 16 -e 6 -Vs 1 -St 1 -S 0.5
[7.74] python pytorch-segmentation/run_trainer.py -M deeplab -bs 16 -e 6 -Vs 0 -St 0 -S 1.0
[3.87] python pytorch-segmentation/run_trainer.py -M deeplab -bs 16 -e 6 -Vs 1
[4.84] python pytorch-segmentation/run_trainer.py -M deeplab -bs 16 -e 6 -Vs 1 -St 1 -S 0.25
#Total time = 5.13+3.85+7.74+3.87+4.84+3.21=28.64
# @ GPU2
[2.55] python pytorch-segmentation/run_trainer.py -M fcn -bs 16 -e 6 -Vs 0
[2.57] python pytorch-segmentation/run_trainer.py -M fcn -bs 16 -e 6 -Vs 2
[3.21] python pytorch-segmentation/run_trainer.py -M fcn -bs 16 -e 6 -Vs 2 -St 0,1 -S 0.25
[5.13] python pytorch-segmentation/run_trainer.py -M fcn -bs 16 -e 6 -Vs 1
[5.81] python pytorch-segmentation/run_trainer.py -M deeplab -bs 16 -e 6 -Vs 1 -St 1 -S 0.5
[7.74] python pytorch-segmentation/run_trainer.py -M deeplab -bs 16 -e 6 -Vs 1 -St 1 -S 1.0
[3.87] python pytorch-segmentation/run_trainer.py -M deeplab -bs 16 -e 6 -Vs 2
# Total time = 2.57+3.21+5.13+5.81+7.74+3.87+2.55=30.88
# @ GPU3
[3.85] python pytorch-segmentation/run_trainer.py -M fcn -bs 16 -e 6 -Vs 0 -St 0 -S 0.5
[5.13] python pytorch-segmentation/run_trainer.py -M fcn -bs 16 -e 6 -Vs 2 -St 0,1 -S 1.0
[3.85] python pytorch-segmentation/run_trainer.py -M fcn -bs 16 -Vs 2 -St 0,1,2 -S 0.5
[3.87] python pytorch-segmentation/run_trainer.py -M deeplab -bs 16 -e 6 -Vs 0
[4.84] python pytorch-segmentation/run_trainer.py -M deeplab -bs 16 -e 6 -Vs 2 -St 0,1 -S 0.25
[7.74] python pytorch-segmentation/run_trainer.py -M deeplab -bs 16 -e 6 -Vs 2 -St 0,1 -S 1.0
# Total time = 5.13+3.85+3.87+4.84+7.74+3.85=29.28