-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathapp.py
137 lines (111 loc) · 4.6 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# # # # # # # # # # # # # # #
# Author: Mustafa Mert Tunalı
# ---------------------------
# ---------------------------
# Deep Learning Training GUI - Backend Side
# ---------------------------
# ---------------------------
# # # # # # # # # # # # # # #
import numpy as np
from multiprocessing import Process
import threading
from flask import Flask, request, jsonify, render_template
from dltgui.dlgui import dl_gui
import tensorflow as tf
# Set Flask
app = Flask(__name__, static_folder="static/")
@app.route('/')
def home():
return render_template('index.html', title ="Version 1.0.2")
@app.route('/contact')
def contact():
return render_template('contact.html')
@app.route('/training')
def training():
return render_template('training.html')
@app.route('/terminal-object-detection',methods = ['POST'])
def terminal_object_detection():
if request.method == 'POST':
result = request.form
dataset = result['dataset']
type_of_label = result['type_of_label']
split_dataset = result['split_dataset']
project_name = result['project_name']
pre_trained_model = result['Pre-trained Model']
number_of_classes = result['noc']
batch_size = result['batch_size']
epoch = result['epoch']
return render_template("terminal-object-detection.html",result = result)
@app.route('/terminal',methods = ['POST'])
def terminal():
if request.method == 'POST':
'''Read the values from HTML file and set the values for training.'''
result = request.form
dataset = result['dataset']
split_dataset = result['split_dataset']
project_name = result['project_name']
pre_trained_model = result['Pre-trained Model']
cpu_gpu = result['CPU/GPU']
number_of_classes = result['noc']
batch_size = result['batch_size']
epoch = result['epoch']
activation_function = result['activation_function']
flip = result['flip']
rotation = result['rotation']
zoom = result['zoom']
fine_tuning = result['fine_tuning']
fine_tune_epochs = result['fine_tune_epochs']
gui = dl_gui(dataset=dataset,
project_name = str(project_name),
split_dataset = float(split_dataset),
pre_trained_model = pre_trained_model,
cpu_gpu = cpu_gpu,
number_of_classes = int(number_of_classes),
batch_size = int(batch_size),
epoch = int(epoch),
activation_function = activation_function,
fine_tune_epochs = int(fine_tune_epochs))
if(flip == "True" or rotation == "True" or zoom == "True"):
samples = result['samples']
gui.load_dataset(imgaugmentation = True, flip = flip, rotation = rotation, zoom = zoom, samples = int(samples))
else:
gui.load_dataset()
thread_gui = threading.Thread(target= gui.train, args=(fine_tuning,)).start()
return render_template("terminal.html",result = result, thread_gui = thread_gui)
@app.route('/predict')
def predict():
return render_template('predict.html')
@app.route('/result', methods = ['POST'])
def result():
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.compat.v1.Session(config=config)
if request.method == 'POST':
result = request.form
dataset = result['dataset']
model_dir= result['model']
img = result['img']
gui = dl_gui(project_name = "Test", dataset=dataset)
predicted_class, max_pred, show_heatmap, img_name = gui.predict(img, model_dir)
return render_template('result.html', result = result, img = img, max_pred = max_pred, predicted_class = predicted_class, show_heatmap = show_heatmap, img_name = img_name, mimetype="text/event-stream")
@app.route('/test', methods = ['POST'])
def test():
if request.method == 'POST':
'''Read the values from HTML file and set the values for training.'''
result = request.form
dataset = result['dataset']
split_dataset = result['split_dataset']
project_name = result['project_name']
pre_trained_model = result['Pre-trained Model']
cpu_gpu = result['CPU/GPU']
number_of_classes = result['noc']
batch_size = result['batch_size']
epoch = result['epoch']
activation_function = result['activation_function']
flip = result['flip']
rotation = result['rotation']
zoom = result['zoom']
print("Flip: ", flip, rotation,zoom)
return "Testing page - look at the conda terminal for values.."
if __name__ == "__main__":
app.run(debug=True)