This documentation applies to the current version of GLM.jl, which requires Julia 0.4 or later. You may also be interested in the documentation for GLM.jl 0.2.5, the last release for Julia 0.2, or GLM.jl 0.4.8, the last release for Julia 0.3.
Pkg.add("GLM")
will install this package and its dependencies, which includes the Distributions package.
The RDatasets package is useful for fitting models on standard R datasets to compare the results with those from R.
To fit a Generalized Linear Model (GLM), use the function, glm(formula, data, family, link)
, where,
formula
: uses column symbols from the DataFrame data, for example, ifnames(data)=[:Y,:X1,:X2]
, then a valid formula isY~X1+X2
data
: a DataFrame which may contain NA values, any rows with NA values are ignoredfamily
: chosen fromBernoulli()
,Binomial()
,Gamma()
,Normal()
, orPoisson()
link
: chosen from the list below, for example,LogitLink()
is a valid link for theBinomial()
family
An intercept is included in any GLM by default.
Many of the methods provided by this package have names similar to those in R.
coef
: extract the estimates of the coefficients in the modeldeviance
: measure of the model fit, weighted residual sum of squares for lm'sdf_residual
: degrees of freedom for residuals, when meaningfulglm
: fit a generalized linear model (an alias forfit(GeneralizedLinearModel, ...)
)lm
: fit a linear model (an alias forfit(LinearModel, ...)
)stderr
: standard errors of the coefficientsvcov
: estimated variance-covariance matrix of the coefficient estimatespredict
: obtain predicted values of the dependent variable from the fitted model
Ordinary Least Squares Regression:
julia> data = DataFrame(X=[1,2,3], Y=[2,4,7])
3x2 DataFrame
|-------|---|---|
| Row # | X | Y |
| 1 | 1 | 2 |
| 2 | 2 | 4 |
| 3 | 3 | 7 |
julia> OLS = glm(Y ~ X, data, Normal(), IdentityLink())
DataFrameRegressionModel{GeneralizedLinearModel,Float64}:
Coefficients:
Estimate Std.Error z value Pr(>|z|)
(Intercept) -0.666667 0.62361 -1.06904 0.2850
X 2.5 0.288675 8.66025 <1e-17
julia> stderr(OLS)
2-element Array{Float64,1}:
3.53553
4.33013
julia> predict(OLS)
3-element Array{Float64,1}:
1.83333
4.33333
6.83333
Probit Regression:
julia> data = DataFrame(X=[1,2,3], Y=[1,0,1])
3x2 DataFrame
|-------|---|---|
| Row # | X | Y |
| 1 | 1 | 1 |
| 2 | 2 | 0 |
| 3 | 3 | 1 |
julia> Probit = glm(Y ~ X, data, Binomial(), ProbitLink())
DataFrameRegressionModel{GeneralizedLinearModel,Float64}:
Coefficients:
Estimate Std.Error z value Pr(>|z|)
(Intercept) 0.430727 1.98019 0.217518 0.8278
X 2.37745e-17 0.91665 2.59362e-17 1.0000
julia> vcov(Probit)
2x2 Array{Float64,2}:
3.92116 -1.6805
-1.6805 0.840248
An example of a simple linear model in R is
> coef(summary(lm(optden ~ carb, Formaldehyde)))
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.005085714 0.007833679 0.6492115 5.515953e-01
carb 0.876285714 0.013534536 64.7444207 3.409192e-07
The corresponding model with the GLM
package is
julia> using GLM, RDatasets
julia> form = dataset("datasets", "Formaldehyde")
6x2 DataFrame
|-------|------|--------|
| Row # | Carb | OptDen |
| 1 | 0.1 | 0.086 |
| 2 | 0.3 | 0.269 |
| 3 | 0.5 | 0.446 |
| 4 | 0.6 | 0.538 |
| 5 | 0.7 | 0.626 |
| 6 | 0.9 | 0.782 |
julia> lm1 = fit(LinearModel, OptDen ~ Carb, form)
Formula: OptDen ~ Carb
Coefficients:
Estimate Std.Error t value Pr(>|t|)
(Intercept) 0.00508571 0.00783368 0.649211 0.5516
Carb 0.876286 0.0135345 64.7444 3.4e-7
julia> confint(lm1)
2x2 Array{Float64,2}:
-0.0166641 0.0268355
0.838708 0.913864
A more complex example in R is
> coef(summary(lm(sr ~ pop15 + pop75 + dpi + ddpi, LifeCycleSavings)))
Estimate Std. Error t value Pr(>|t|)
(Intercept) 28.5660865407 7.3545161062 3.8841558 0.0003338249
pop15 -0.4611931471 0.1446422248 -3.1885098 0.0026030189
pop75 -1.6914976767 1.0835989307 -1.5609998 0.1255297940
dpi -0.0003369019 0.0009311072 -0.3618293 0.7191731554
ddpi 0.4096949279 0.1961971276 2.0881801 0.0424711387
with the corresponding Julia code
julia> LifeCycleSavings = dataset("datasets", "LifeCycleSavings")
50x6 DataFrame
|-------|----------------|-------|-------|-------|---------|-------|
| Row # | Country | SR | Pop15 | Pop75 | DPI | DDPI |
| 1 | Australia | 11.43 | 29.35 | 2.87 | 2329.68 | 2.87 |
| 2 | Austria | 12.07 | 23.32 | 4.41 | 1507.99 | 3.93 |
| 3 | Belgium | 13.17 | 23.8 | 4.43 | 2108.47 | 3.82 |
| 4 | Bolivia | 5.75 | 41.89 | 1.67 | 189.13 | 0.22 |
| 5 | Brazil | 12.88 | 42.19 | 0.83 | 728.47 | 4.56 |
| 6 | Canada | 8.79 | 31.72 | 2.85 | 2982.88 | 2.43 |
| 7 | Chile | 0.6 | 39.74 | 1.34 | 662.86 | 2.67 |
| 8 | China | 11.9 | 44.75 | 0.67 | 289.52 | 6.51 |
| 9 | Colombia | 4.98 | 46.64 | 1.06 | 276.65 | 3.08 |
⋮
| 41 | Turkey | 5.13 | 43.42 | 1.08 | 389.66 | 2.96 |
| 42 | Tunisia | 2.81 | 46.12 | 1.21 | 249.87 | 1.13 |
| 43 | United Kingdom | 7.81 | 23.27 | 4.46 | 1813.93 | 2.01 |
| 44 | United States | 7.56 | 29.81 | 3.43 | 4001.89 | 2.45 |
| 45 | Venezuela | 9.22 | 46.4 | 0.9 | 813.39 | 0.53 |
| 46 | Zambia | 18.56 | 45.25 | 0.56 | 138.33 | 5.14 |
| 47 | Jamaica | 7.72 | 41.12 | 1.73 | 380.47 | 10.23 |
| 48 | Uruguay | 9.24 | 28.13 | 2.72 | 766.54 | 1.88 |
| 49 | Libya | 8.89 | 43.69 | 2.07 | 123.58 | 16.71 |
| 50 | Malaysia | 4.71 | 47.2 | 0.66 | 242.69 | 5.08 |
julia> fm2 = fit(LinearModel, SR ~ Pop15 + Pop75 + DPI + DDPI, LifeCycleSavings)
Formula: SR ~ :(+(Pop15,Pop75,DPI,DDPI))
Coefficients:
Estimate Std.Error t value Pr(>|t|)
(Intercept) 28.5661 7.35452 3.88416 0.00033
Pop15 -0.461193 0.144642 -3.18851 0.0026
Pop75 -1.6915 1.0836 -1.561 0.1255
DPI -0.000336902 0.000931107 -0.361829 0.7192
DDPI 0.409695 0.196197 2.08818 0.0425
The glm
function (or equivalently, fit(GeneralizedLinearModel, ...)
)
works similarly to the R glm
function except that the family
argument is replaced by a Distribution
type and, optionally, a Link
type.
The first example from ?glm
in R is
glm> ## Dobson (1990) Page 93: Randomized Controlled Trial :
glm> counts <- c(18,17,15,20,10,20,25,13,12)
glm> outcome <- gl(3,1,9)
glm> treatment <- gl(3,3)
glm> print(d.AD <- data.frame(treatment, outcome, counts))
treatment outcome counts
1 1 1 18
2 1 2 17
3 1 3 15
4 2 1 20
5 2 2 10
6 2 3 20
7 3 1 25
8 3 2 13
9 3 3 12
glm> glm.D93 <- glm(counts ~ outcome + treatment, family=poisson())
glm> anova(glm.D93)
Analysis of Deviance Table
Model: poisson, link: log
Response: counts
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev
NULL 8 10.5814
outcome 2 5.4523 6 5.1291
treatment 2 0.0000 4 5.1291
glm> ## No test:
glm> summary(glm.D93)
Call:
glm(formula = counts ~ outcome + treatment, family = poisson())
Deviance Residuals:
1 2 3 4 5 6 7 8
-0.67125 0.96272 -0.16965 -0.21999 -0.95552 1.04939 0.84715 -0.09167
9
-0.96656
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.045e+00 1.709e-01 17.815 <2e-16 ***
outcome2 -4.543e-01 2.022e-01 -2.247 0.0246 *
outcome3 -2.930e-01 1.927e-01 -1.520 0.1285
treatment2 3.795e-16 2.000e-01 0.000 1.0000
treatment3 3.553e-16 2.000e-01 0.000 1.0000
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 10.5814 on 8 degrees of freedom
Residual deviance: 5.1291 on 4 degrees of freedom
AIC: 56.761
Number of Fisher Scoring iterations: 4
In Julia this becomes
julia> dobson = DataFrame(Counts = [18.,17,15,20,10,20,25,13,12],
Outcome = gl(3,1,9),
Treatment = gl(3,3))
9x3 DataFrame
|-------|--------|---------|-----------|
| Row # | Counts | Outcome | Treatment |
| 1 | 18.0 | 1 | 1 |
| 2 | 17.0 | 2 | 1 |
| 3 | 15.0 | 3 | 1 |
| 4 | 20.0 | 1 | 2 |
| 5 | 10.0 | 2 | 2 |
| 6 | 20.0 | 3 | 2 |
| 7 | 25.0 | 1 | 3 |
| 8 | 13.0 | 2 | 3 |
| 9 | 12.0 | 3 | 3 |
julia> gm1 = fit(GeneralizedLinearModel, Counts ~ Outcome + Treatment, dobson, Poisson())
Formula: Counts ~ :(+(Outcome,Treatment))
Coefficients:
Estimate Std.Error z value Pr(>|z|)
(Intercept) 3.04452 0.170899 17.8148 < eps()
Outcome - 2 -0.454255 0.202171 -2.24689 0.0246
Outcome - 3 -0.292987 0.192742 -1.5201 0.1285
Treatment - 2 5.36273e-16 0.2 2.68137e-15 1.0
Treatment - 3 -5.07534e-17 0.2 -2.53767e-16 1.0
julia> deviance(gm1)
5.129141077001149
Typical distributions for use with glm
and their canonical link
functions are
Bernoulli (LogitLink)
Binomial (LogitLink)
Gamma (InverseLink)
Normal (IdentityLink)
Poisson (LogLink)
Currently the available Link types are
CauchitLink
CloglogLink
IdentityLink
InverseLink
LogitLink
LogLink
ProbitLink
SqrtLink
Other examples are shown in test/glmFit.jl
.
The general approach in this code is to separate functionality related
to the response from that related to the linear predictor. This
allows for greater generality by mixing and matching different
subtypes of the abstract type LinPred
and the abstract type ModResp
.
A LinPred
type incorporates the parameter vector and the model
matrix. The parameter vector is a dense numeric vector but the model
matrix can be dense or sparse. A LinPred
type must incorporate
some form of a decomposition of the weighted model matrix that allows
for the solution of a system X'W * X * delta=X'wres
where W
is a
diagonal matrix of "X weights", provided as a vector of the square
roots of the diagonal elements, and wres
is a weighted residual vector.
Currently there are two dense predictor types, DensePredQR
and
DensePredChol
, and the usual caveats apply. The Cholesky
version is faster but somewhat less accurate than that QR version.
The skeleton of a distributed predictor type is in the code
but not yet fully fleshed out. Because Julia by default uses
OpenBLAS, which is already multi-threaded on multicore machines, there
may not be much advantage in using distributed predictor types.
A ModResp
type must provide methods for the wtres
and
sqrtxwts
generics. Their values are the arguments to the
updatebeta
methods of the LinPred
types. The
Float64
value returned by updatedelta
is the value of the
convergence criterion.
Similarly, LinPred
types must provide a method for the
linpred
generic. In general linpred
takes an instance of
a LinPred
type and a step factor. Methods that take only an instance
of a LinPred
type use a default step factor of 1. The value of
linpred
is the argument to the updatemu
method for
ModResp
types. The updatemu
method returns the updated
deviance.