-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbalance_data.py
43 lines (40 loc) · 1.45 KB
/
balance_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import numpy as np
import matplotlib.pyplot as plt
with np.load("KKanji/kkanji-imgs.npz") as data:
imgs = data['arr_0']
with np.load("KKanji/kkanji-labels.npz") as data:
labels = data['arr_0']
with np.load("KKanji/kkanji-unique-labels.npz") as data:
unique_labels = data['arr_0']
print("imgs and labels loaded.")
classes = len(unique_labels)
def invert(x):
return 1./x
hist = np.histogram(labels, bins=range(0, len(unique_labels)), density=True)
labels_count = np.zeros((classes, 1), dtype='int32')
def balance_select(array):
for i in range(0, len(array)):
labels_count[array[i]]+=1
balance_select(labels)
for i in range(0, classes):
print(unique_labels[i], ": ", labels_count[i])
# if labels_count[i]<100:
# print(unique_labels[i], "< 100")
# elif labels_count[i]<200:
# print(unique_labels[i], "< 200")
# elif labels_count[i]<300:
# print(unique_labels[i], "< 300")
# elif labels_count[i]<400:
# print(unique_labels[i], "< 400")
# elif labels_count[i]<500:
# print(unique_labels[i], "< 500")
# elif labels_count[i]<600:
# print(unique_labels[i], "< 600")
# elif labels_count[i]<700:
# print(unique_labels[i], "< 700")
# elif labels_count[i]<800:
# print(unique_labels[i], "< 800")
# elif labels_count[i]<900:
# print(unique_labels[i], "< 900")
# elif labels_count[i]<1000:
# print(unique_labels[i], "< 1000")