diff --git a/rtrec/recommender.py b/rtrec/recommender.py index cb75533..9c64f3b 100644 --- a/rtrec/recommender.py +++ b/rtrec/recommender.py @@ -45,11 +45,11 @@ def fit( # If train_data contains user_tags and item_tags columns, add them to the model if "user_tags" in train_data.columns: - user_tags = train_data[["user", "user_tags"]].drop_duplicates() + user_tags = train_data[["user", "user_tags"]] for user, tags in user_tags.itertuples(index=False, name=None): self.model.register_user_feature(user, tags) if "item_tags" in train_data.columns: - item_tags = train_data[["item", "item_tags"]].drop_duplicates() + item_tags = train_data[["item", "item_tags"]] for item, tags in item_tags.itertuples(index=False, name=None): self.model.register_item_feature(item, tags) @@ -77,11 +77,11 @@ def bulk_fit(self, train_data: pd.DataFrame, batch_size: int = 1_000, update_int # If train_data contains user_tags and item_tags columns, add them to the model if "user_tags" in train_data.columns: - user_tags = train_data[["user", "user_tags"]].drop_duplicates() + user_tags = train_data[["user", "user_tags"]] for user, tags in user_tags.itertuples(index=False, name=None): self.model.register_user_feature(user, tags) if "item_tags" in train_data.columns: - item_tags = train_data[["item", "item_tags"]].drop_duplicates() + item_tags = train_data[["item", "item_tags"]] for item, tags in item_tags.itertuples(index=False, name=None): self.model.register_item_feature(item, tags)