-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
153 lines (124 loc) · 5.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import argparse
import os
import pickle
import time
import numpy as np
import torch.optim as optim
import torch
from torch.autograd import Variable
from loss_functions import PredictionLoss
from model import RNNPredictNet
from utils import DataLoader
from tensorboardX import SummaryWriter
USE_CUDA = torch.cuda.is_available()
writer = SummaryWriter()
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--input_size', type=int, default=3,
help='input num features')
parser.add_argument('--hidden_size', type=int, default=256,
help='size of RNN hidden state')
parser.add_argument('--num_layers', type=int, default=2,
help='number of layers in the RNN')
parser.add_argument('--bidirectional', type=bool, default=False,
help='use BLSTM')
parser.add_argument('--batch_size', type=int, default=50,
help='batch size')
parser.add_argument('--seq_length', type=int, default=300,
help='RNN sequence length')
parser.add_argument('--num_epochs', type=int, default=30,
help='number of epochs')
parser.add_argument('--save_every', type=int, default=100,
help='save frequency')
parser.add_argument('--model_dir', type=str, default='save',
help='directory to save model to')
parser.add_argument('--grad_clip', type=float, default=10.,
help='clip gradients at this value')
parser.add_argument('--learning_rate', type=float, default=0.005,
help='learning rate')
parser.add_argument('--decay_rate', type=float, default=0.95,
help='decay rate for rmsprop')
parser.add_argument('--num_mixture', type=int, default=20,
help='number of gaussian mixtures')
parser.add_argument('--data_scale', type=float, default=20,
help='factor to scale raw data down by')
parser.add_argument('--keep_prob', type=float, default=0.8,
help='dropout keep probability')
parser.add_argument('--validate_every', type=int, default=10,
help='frequency of validation')
args = parser.parse_args()
train(args)
def train(args):
data_loader = DataLoader(args.batch_size, args.seq_length, args.data_scale)
if args.model_dir != '' and not os.path.exists(args.model_dir):
os.makedirs(args.model_dir)
with open(os.path.join(args.model_dir, 'config.pkl'), 'wb') as f:
pickle.dump(args, f)
model = RNNPredictNet(args)
if USE_CUDA:
model = model.cuda()
loss_fn = PredictionLoss(args.batch_size, args.seq_length)
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
lr_scheduler = optim.lr_scheduler.ExponentialLR(optimizer=optimizer, gamma=args.decay_rate)
training_loss = []
validation_loss = []
for e in range(args.num_epochs):
data_loader.reset_batch_pointer()
v_x, v_y = data_loader.validation_data()
v_x = torch.from_numpy(np.array(v_x))
v_y = torch.from_numpy(np.array(v_y))
if USE_CUDA:
v_x = v_x.cuda()
v_y = v_y.cuda()
for b in range(data_loader.num_batches):
model.train()
train_step = e * data_loader.num_batches + b
start = time.time()
x, y = data_loader.next_batch()
x = torch.from_numpy(np.array(x))
y = torch.from_numpy(np.array(y))
if USE_CUDA:
x = x.cuda()
y = y.cuda()
x = Variable(x)
y = Variable(y)
optimizer.zero_grad()
output = model(x)
train_loss = loss_fn(output, y)
train_loss.backward()
torch.nn.utils.clip_grad_norm(model.parameters(), args.grad_clip)
optimizer.step()
training_loss.append(train_loss.data[0])
writer.add_scalar('Training Loss', train_loss.data[0], train_step)
model.eval()
output = model(Variable(v_x, volatile=True))
val_loss = loss_fn(output, Variable(v_y, volatile=True))
validation_loss.append(val_loss.data[0])
end = time.time()
print(
"{}/{} (epoch {}), train_loss = {:.3f}, valid_loss = {:.3f}, time/batch = {:.3f}"
.format(
train_step,
args.num_epochs * data_loader.num_batches,
e,
train_loss.data[0],
val_loss.data[0],
end - start))
if (train_step %
args.save_every == 0) and (train_step > 0):
checkpoint_path = os.path.join(
args.model_dir, 'model.pth')
torch.save({
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': e,
'current_lr': args.learning_rate * (args.decay_rate ** e)
},
checkpoint_path)
from sample import sample_stroke
_, img = sample_stroke()
print("model saved to {}".format(checkpoint_path))
lr_scheduler.step()
if __name__ == '__main__':
main()
writer.close()