forked from blender/blender-addons
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mesh_looptools.py
5244 lines (4692 loc) · 185 KB
/
mesh_looptools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# SPDX-FileCopyrightText: 2011-2023 Blender Foundation
#
# SPDX-License-Identifier: GPL-2.0-or-later
# Maintainer: Vladimir Spivak (cwolf3d)
# Originally an addon by Bart Crouch
bl_info = {
"name": "LoopTools",
"author": "Bart Crouch, Vladimir Spivak (cwolf3d)",
"version": (4, 7, 7),
"blender": (2, 80, 0),
"location": "View3D > Sidebar > Edit Tab / Edit Mode Context Menu",
"warning": "",
"description": "Mesh modelling toolkit. Several tools to aid modelling",
"doc_url": "{BLENDER_MANUAL_URL}/addons/mesh/looptools.html",
"category": "Mesh",
}
import bmesh
import bpy
import collections
import mathutils
import math
from bpy_extras import view3d_utils
from bpy.types import (
Operator,
Menu,
Panel,
PropertyGroup,
AddonPreferences,
)
from bpy.props import (
BoolProperty,
EnumProperty,
FloatProperty,
IntProperty,
PointerProperty,
StringProperty,
)
# ########################################
# ##### General functions ################
# ########################################
# used by all tools to improve speed on reruns Unlink
looptools_cache = {}
def get_strokes(self, context):
looptools = context.window_manager.looptools
if looptools.gstretch_use_guide == "Annotation":
try:
strokes = bpy.data.grease_pencils[0].layers.active.active_frame.strokes
return True
except:
self.report({'WARNING'}, "active Annotation strokes not found")
return False
if looptools.gstretch_use_guide == "GPencil" and not looptools.gstretch_guide == None:
try:
strokes = looptools.gstretch_guide.data.layers.active.active_frame.strokes
return True
except:
self.report({'WARNING'}, "active GPencil strokes not found")
return False
else:
return False
# force a full recalculation next time
def cache_delete(tool):
if tool in looptools_cache:
del looptools_cache[tool]
# check cache for stored information
def cache_read(tool, object, bm, input_method, boundaries):
# current tool not cached yet
if tool not in looptools_cache:
return(False, False, False, False, False)
# check if selected object didn't change
if object.name != looptools_cache[tool]["object"]:
return(False, False, False, False, False)
# check if input didn't change
if input_method != looptools_cache[tool]["input_method"]:
return(False, False, False, False, False)
if boundaries != looptools_cache[tool]["boundaries"]:
return(False, False, False, False, False)
modifiers = [mod.name for mod in object.modifiers if mod.show_viewport and
mod.type == 'MIRROR']
if modifiers != looptools_cache[tool]["modifiers"]:
return(False, False, False, False, False)
input = [v.index for v in bm.verts if v.select and not v.hide]
if input != looptools_cache[tool]["input"]:
return(False, False, False, False, False)
# reading values
single_loops = looptools_cache[tool]["single_loops"]
loops = looptools_cache[tool]["loops"]
derived = looptools_cache[tool]["derived"]
mapping = looptools_cache[tool]["mapping"]
return(True, single_loops, loops, derived, mapping)
# store information in the cache
def cache_write(tool, object, bm, input_method, boundaries, single_loops,
loops, derived, mapping):
# clear cache of current tool
if tool in looptools_cache:
del looptools_cache[tool]
# prepare values to be saved to cache
input = [v.index for v in bm.verts if v.select and not v.hide]
modifiers = [mod.name for mod in object.modifiers if mod.show_viewport
and mod.type == 'MIRROR']
# update cache
looptools_cache[tool] = {
"input": input, "object": object.name,
"input_method": input_method, "boundaries": boundaries,
"single_loops": single_loops, "loops": loops,
"derived": derived, "mapping": mapping, "modifiers": modifiers}
# calculates natural cubic splines through all given knots
def calculate_cubic_splines(bm_mod, tknots, knots):
# hack for circular loops
if knots[0] == knots[-1] and len(knots) > 1:
circular = True
k_new1 = []
for k in range(-1, -5, -1):
if k - 1 < -len(knots):
k += len(knots)
k_new1.append(knots[k - 1])
k_new2 = []
for k in range(4):
if k + 1 > len(knots) - 1:
k -= len(knots)
k_new2.append(knots[k + 1])
for k in k_new1:
knots.insert(0, k)
for k in k_new2:
knots.append(k)
t_new1 = []
total1 = 0
for t in range(-1, -5, -1):
if t - 1 < -len(tknots):
t += len(tknots)
total1 += tknots[t] - tknots[t - 1]
t_new1.append(tknots[0] - total1)
t_new2 = []
total2 = 0
for t in range(4):
if t + 1 > len(tknots) - 1:
t -= len(tknots)
total2 += tknots[t + 1] - tknots[t]
t_new2.append(tknots[-1] + total2)
for t in t_new1:
tknots.insert(0, t)
for t in t_new2:
tknots.append(t)
else:
circular = False
# end of hack
n = len(knots)
if n < 2:
return False
x = tknots[:]
locs = [bm_mod.verts[k].co[:] for k in knots]
result = []
for j in range(3):
a = []
for i in locs:
a.append(i[j])
h = []
for i in range(n - 1):
if x[i + 1] - x[i] == 0:
h.append(1e-8)
else:
h.append(x[i + 1] - x[i])
q = [False]
for i in range(1, n - 1):
q.append(3 / h[i] * (a[i + 1] - a[i]) - 3 / h[i - 1] * (a[i] - a[i - 1]))
l = [1.0]
u = [0.0]
z = [0.0]
for i in range(1, n - 1):
l.append(2 * (x[i + 1] - x[i - 1]) - h[i - 1] * u[i - 1])
if l[i] == 0:
l[i] = 1e-8
u.append(h[i] / l[i])
z.append((q[i] - h[i - 1] * z[i - 1]) / l[i])
l.append(1.0)
z.append(0.0)
b = [False for i in range(n - 1)]
c = [False for i in range(n)]
d = [False for i in range(n - 1)]
c[n - 1] = 0.0
for i in range(n - 2, -1, -1):
c[i] = z[i] - u[i] * c[i + 1]
b[i] = (a[i + 1] - a[i]) / h[i] - h[i] * (c[i + 1] + 2 * c[i]) / 3
d[i] = (c[i + 1] - c[i]) / (3 * h[i])
for i in range(n - 1):
result.append([a[i], b[i], c[i], d[i], x[i]])
splines = []
for i in range(len(knots) - 1):
splines.append([result[i], result[i + n - 1], result[i + (n - 1) * 2]])
if circular: # cleaning up after hack
knots = knots[4:-4]
tknots = tknots[4:-4]
return(splines)
# calculates linear splines through all given knots
def calculate_linear_splines(bm_mod, tknots, knots):
splines = []
for i in range(len(knots) - 1):
a = bm_mod.verts[knots[i]].co
b = bm_mod.verts[knots[i + 1]].co
d = b - a
t = tknots[i]
u = tknots[i + 1] - t
splines.append([a, d, t, u]) # [locStart, locDif, tStart, tDif]
return(splines)
# calculate a best-fit plane to the given vertices
def calculate_plane(bm_mod, loop, method="best_fit", object=False):
# getting the vertex locations
locs = [bm_mod.verts[v].co.copy() for v in loop[0]]
# calculating the center of masss
com = mathutils.Vector()
for loc in locs:
com += loc
com /= len(locs)
x, y, z = com
if method == 'best_fit':
# creating the covariance matrix
mat = mathutils.Matrix(((0.0, 0.0, 0.0),
(0.0, 0.0, 0.0),
(0.0, 0.0, 0.0),
))
for loc in locs:
mat[0][0] += (loc[0] - x) ** 2
mat[1][0] += (loc[0] - x) * (loc[1] - y)
mat[2][0] += (loc[0] - x) * (loc[2] - z)
mat[0][1] += (loc[1] - y) * (loc[0] - x)
mat[1][1] += (loc[1] - y) ** 2
mat[2][1] += (loc[1] - y) * (loc[2] - z)
mat[0][2] += (loc[2] - z) * (loc[0] - x)
mat[1][2] += (loc[2] - z) * (loc[1] - y)
mat[2][2] += (loc[2] - z) ** 2
# calculating the normal to the plane
normal = False
try:
mat = matrix_invert(mat)
except:
ax = 2
if math.fabs(sum(mat[0])) < math.fabs(sum(mat[1])):
if math.fabs(sum(mat[0])) < math.fabs(sum(mat[2])):
ax = 0
elif math.fabs(sum(mat[1])) < math.fabs(sum(mat[2])):
ax = 1
if ax == 0:
normal = mathutils.Vector((1.0, 0.0, 0.0))
elif ax == 1:
normal = mathutils.Vector((0.0, 1.0, 0.0))
else:
normal = mathutils.Vector((0.0, 0.0, 1.0))
if not normal:
# warning! this is different from .normalize()
itermax = 500
vec2 = mathutils.Vector((1.0, 1.0, 1.0))
for i in range(itermax):
vec = vec2
vec2 = mat @ vec
# Calculate length with double precision to avoid problems with `inf`
vec2_length = math.sqrt(vec2[0] ** 2 + vec2[1] ** 2 + vec2[2] ** 2)
if vec2_length != 0:
vec2 /= vec2_length
if vec2 == vec:
break
if vec2.length == 0:
vec2 = mathutils.Vector((1.0, 1.0, 1.0))
normal = vec2
elif method == 'normal':
# averaging the vertex normals
v_normals = [bm_mod.verts[v].normal for v in loop[0]]
normal = mathutils.Vector()
for v_normal in v_normals:
normal += v_normal
normal /= len(v_normals)
normal.normalize()
elif method == 'view':
# calculate view normal
rotation = bpy.context.space_data.region_3d.view_matrix.to_3x3().\
inverted()
normal = rotation @ mathutils.Vector((0.0, 0.0, 1.0))
if object:
normal = object.matrix_world.inverted().to_euler().to_matrix() @ \
normal
return(com, normal)
# calculate splines based on given interpolation method (controller function)
def calculate_splines(interpolation, bm_mod, tknots, knots):
if interpolation == 'cubic':
splines = calculate_cubic_splines(bm_mod, tknots, knots[:])
else: # interpolations == 'linear'
splines = calculate_linear_splines(bm_mod, tknots, knots[:])
return(splines)
# check loops and only return valid ones
def check_loops(loops, mapping, bm_mod):
valid_loops = []
for loop, circular in loops:
# loop needs to have at least 3 vertices
if len(loop) < 3:
continue
# loop needs at least 1 vertex in the original, non-mirrored mesh
if mapping:
all_virtual = True
for vert in loop:
if mapping[vert] > -1:
all_virtual = False
break
if all_virtual:
continue
# vertices can not all be at the same location
stacked = True
for i in range(len(loop) - 1):
if (bm_mod.verts[loop[i]].co - bm_mod.verts[loop[i + 1]].co).length > 1e-6:
stacked = False
break
if stacked:
continue
# passed all tests, loop is valid
valid_loops.append([loop, circular])
return(valid_loops)
# input: bmesh, output: dict with the edge-key as key and face-index as value
def dict_edge_faces(bm):
edge_faces = dict([[edgekey(edge), []] for edge in bm.edges if not edge.hide])
for face in bm.faces:
if face.hide:
continue
for key in face_edgekeys(face):
edge_faces[key].append(face.index)
return(edge_faces)
# input: bmesh (edge-faces optional), output: dict with face-face connections
def dict_face_faces(bm, edge_faces=False):
if not edge_faces:
edge_faces = dict_edge_faces(bm)
connected_faces = dict([[face.index, []] for face in bm.faces if not face.hide])
for face in bm.faces:
if face.hide:
continue
for edge_key in face_edgekeys(face):
for connected_face in edge_faces[edge_key]:
if connected_face == face.index:
continue
connected_faces[face.index].append(connected_face)
return(connected_faces)
# input: bmesh, output: dict with the vert index as key and edge-keys as value
def dict_vert_edges(bm):
vert_edges = dict([[v.index, []] for v in bm.verts if not v.hide])
for edge in bm.edges:
if edge.hide:
continue
ek = edgekey(edge)
for vert in ek:
vert_edges[vert].append(ek)
return(vert_edges)
# input: bmesh, output: dict with the vert index as key and face index as value
def dict_vert_faces(bm):
vert_faces = dict([[v.index, []] for v in bm.verts if not v.hide])
for face in bm.faces:
if not face.hide:
for vert in face.verts:
vert_faces[vert.index].append(face.index)
return(vert_faces)
# input: list of edge-keys, output: dictionary with vertex-vertex connections
def dict_vert_verts(edge_keys):
# create connection data
vert_verts = {}
for ek in edge_keys:
for i in range(2):
if ek[i] in vert_verts:
vert_verts[ek[i]].append(ek[1 - i])
else:
vert_verts[ek[i]] = [ek[1 - i]]
return(vert_verts)
# return the edgekey ([v1.index, v2.index]) of a bmesh edge
def edgekey(edge):
return(tuple(sorted([edge.verts[0].index, edge.verts[1].index])))
# returns the edgekeys of a bmesh face
def face_edgekeys(face):
return([tuple(sorted([edge.verts[0].index, edge.verts[1].index])) for edge in face.edges])
# calculate input loops
def get_connected_input(object, bm, not_use_mirror, input):
# get mesh with modifiers applied
derived, bm_mod = get_derived_bmesh(object, bm, not_use_mirror)
# calculate selected loops
edge_keys = [edgekey(edge) for edge in bm_mod.edges if edge.select and not edge.hide]
loops = get_connected_selections(edge_keys)
# if only selected loops are needed, we're done
if input == 'selected':
return(derived, bm_mod, loops)
# elif input == 'all':
loops = get_parallel_loops(bm_mod, loops)
return(derived, bm_mod, loops)
# sorts all edge-keys into a list of loops
def get_connected_selections(edge_keys):
# create connection data
vert_verts = dict_vert_verts(edge_keys)
# find loops consisting of connected selected edges
loops = []
while len(vert_verts) > 0:
loop = [iter(vert_verts.keys()).__next__()]
growing = True
flipped = False
# extend loop
while growing:
# no more connection data for current vertex
if loop[-1] not in vert_verts:
if not flipped:
loop.reverse()
flipped = True
else:
growing = False
else:
extended = False
for i, next_vert in enumerate(vert_verts[loop[-1]]):
if next_vert not in loop:
vert_verts[loop[-1]].pop(i)
if len(vert_verts[loop[-1]]) == 0:
del vert_verts[loop[-1]]
# remove connection both ways
if next_vert in vert_verts:
if len(vert_verts[next_vert]) == 1:
del vert_verts[next_vert]
else:
vert_verts[next_vert].remove(loop[-1])
loop.append(next_vert)
extended = True
break
if not extended:
# found one end of the loop, continue with next
if not flipped:
loop.reverse()
flipped = True
# found both ends of the loop, stop growing
else:
growing = False
# check if loop is circular
if loop[0] in vert_verts:
if loop[-1] in vert_verts[loop[0]]:
# is circular
if len(vert_verts[loop[0]]) == 1:
del vert_verts[loop[0]]
else:
vert_verts[loop[0]].remove(loop[-1])
if len(vert_verts[loop[-1]]) == 1:
del vert_verts[loop[-1]]
else:
vert_verts[loop[-1]].remove(loop[0])
loop = [loop, True]
else:
# not circular
loop = [loop, False]
else:
# not circular
loop = [loop, False]
loops.append(loop)
return(loops)
# get the derived mesh data, if there is a mirror modifier
def get_derived_bmesh(object, bm, not_use_mirror):
# check for mirror modifiers
if 'MIRROR' in [mod.type for mod in object.modifiers if mod.show_viewport]:
derived = True
# disable other modifiers
show_viewport = [mod.name for mod in object.modifiers if mod.show_viewport]
merge = []
for mod in object.modifiers:
if mod.type != 'MIRROR':
mod.show_viewport = False
#leave the merge points untouched
if mod.type == 'MIRROR':
merge.append(mod.use_mirror_merge)
if not_use_mirror:
mod.use_mirror_merge = False
# get derived mesh
bm_mod = bmesh.new()
depsgraph = bpy.context.evaluated_depsgraph_get()
object_eval = object.evaluated_get(depsgraph)
mesh_mod = object_eval.to_mesh()
bm_mod.from_mesh(mesh_mod)
object_eval.to_mesh_clear()
# re-enable other modifiers
for mod_name in show_viewport:
object.modifiers[mod_name].show_viewport = True
merge.reverse()
for mod in object.modifiers:
if mod.type == 'MIRROR':
mod.use_mirror_merge = merge.pop()
# no mirror modifiers, so no derived mesh necessary
else:
derived = False
bm_mod = bm
bm_mod.verts.ensure_lookup_table()
bm_mod.edges.ensure_lookup_table()
bm_mod.faces.ensure_lookup_table()
return(derived, bm_mod)
# return a mapping of derived indices to indices
def get_mapping(derived, bm, bm_mod, single_vertices, full_search, loops):
if not derived:
return(False)
if full_search:
verts = [v for v in bm.verts if not v.hide]
else:
verts = [v for v in bm.verts if v.select and not v.hide]
# non-selected vertices around single vertices also need to be mapped
if single_vertices:
mapping = dict([[vert, -1] for vert in single_vertices])
verts_mod = [bm_mod.verts[vert] for vert in single_vertices]
for v in verts:
for v_mod in verts_mod:
if (v.co - v_mod.co).length < 1e-6:
mapping[v_mod.index] = v.index
break
real_singles = [v_real for v_real in mapping.values() if v_real > -1]
verts_indices = [vert.index for vert in verts]
for face in [face for face in bm.faces if not face.select and not face.hide]:
for vert in face.verts:
if vert.index in real_singles:
for v in face.verts:
if v.index not in verts_indices:
if v not in verts:
verts.append(v)
break
# create mapping of derived indices to indices
mapping = dict([[vert, -1] for loop in loops for vert in loop[0]])
if single_vertices:
for single in single_vertices:
mapping[single] = -1
verts_mod = [bm_mod.verts[i] for i in mapping.keys()]
for v in verts:
for v_mod in verts_mod:
if (v.co - v_mod.co).length < 1e-6:
mapping[v_mod.index] = v.index
verts_mod.remove(v_mod)
break
return(mapping)
# calculate the determinant of a matrix
def matrix_determinant(m):
determinant = m[0][0] * m[1][1] * m[2][2] + m[0][1] * m[1][2] * m[2][0] \
+ m[0][2] * m[1][0] * m[2][1] - m[0][2] * m[1][1] * m[2][0] \
- m[0][1] * m[1][0] * m[2][2] - m[0][0] * m[1][2] * m[2][1]
return(determinant)
# custom matrix inversion, to provide higher precision than the built-in one
def matrix_invert(m):
r = mathutils.Matrix((
(m[1][1] * m[2][2] - m[1][2] * m[2][1], m[0][2] * m[2][1] - m[0][1] * m[2][2],
m[0][1] * m[1][2] - m[0][2] * m[1][1]),
(m[1][2] * m[2][0] - m[1][0] * m[2][2], m[0][0] * m[2][2] - m[0][2] * m[2][0],
m[0][2] * m[1][0] - m[0][0] * m[1][2]),
(m[1][0] * m[2][1] - m[1][1] * m[2][0], m[0][1] * m[2][0] - m[0][0] * m[2][1],
m[0][0] * m[1][1] - m[0][1] * m[1][0])))
return (r * (1 / matrix_determinant(m)))
# returns a list of all loops parallel to the input, input included
def get_parallel_loops(bm_mod, loops):
# get required dictionaries
edge_faces = dict_edge_faces(bm_mod)
connected_faces = dict_face_faces(bm_mod, edge_faces)
# turn vertex loops into edge loops
edgeloops = []
for loop in loops:
edgeloop = [[sorted([loop[0][i], loop[0][i + 1]]) for i in
range(len(loop[0]) - 1)], loop[1]]
if loop[1]: # circular
edgeloop[0].append(sorted([loop[0][-1], loop[0][0]]))
edgeloops.append(edgeloop[:])
# variables to keep track while iterating
all_edgeloops = []
has_branches = False
for loop in edgeloops:
# initialise with original loop
all_edgeloops.append(loop[0])
newloops = [loop[0]]
verts_used = []
for edge in loop[0]:
if edge[0] not in verts_used:
verts_used.append(edge[0])
if edge[1] not in verts_used:
verts_used.append(edge[1])
# find parallel loops
while len(newloops) > 0:
side_a = []
side_b = []
for i in newloops[-1]:
i = tuple(i)
forbidden_side = False
if i not in edge_faces:
# weird input with branches
has_branches = True
break
for face in edge_faces[i]:
if len(side_a) == 0 and forbidden_side != "a":
side_a.append(face)
if forbidden_side:
break
forbidden_side = "a"
continue
elif side_a[-1] in connected_faces[face] and \
forbidden_side != "a":
side_a.append(face)
if forbidden_side:
break
forbidden_side = "a"
continue
if len(side_b) == 0 and forbidden_side != "b":
side_b.append(face)
if forbidden_side:
break
forbidden_side = "b"
continue
elif side_b[-1] in connected_faces[face] and \
forbidden_side != "b":
side_b.append(face)
if forbidden_side:
break
forbidden_side = "b"
continue
if has_branches:
# weird input with branches
break
newloops.pop(-1)
sides = []
if side_a:
sides.append(side_a)
if side_b:
sides.append(side_b)
for side in sides:
extraloop = []
for fi in side:
for key in face_edgekeys(bm_mod.faces[fi]):
if key[0] not in verts_used and key[1] not in \
verts_used:
extraloop.append(key)
break
if extraloop:
for key in extraloop:
for new_vert in key:
if new_vert not in verts_used:
verts_used.append(new_vert)
newloops.append(extraloop)
all_edgeloops.append(extraloop)
# input contains branches, only return selected loop
if has_branches:
return(loops)
# change edgeloops into normal loops
loops = []
for edgeloop in all_edgeloops:
loop = []
# grow loop by comparing vertices between consecutive edge-keys
for i in range(len(edgeloop) - 1):
for vert in range(2):
if edgeloop[i][vert] in edgeloop[i + 1]:
loop.append(edgeloop[i][vert])
break
if loop:
# add starting vertex
for vert in range(2):
if edgeloop[0][vert] != loop[0]:
loop = [edgeloop[0][vert]] + loop
break
# add ending vertex
for vert in range(2):
if edgeloop[-1][vert] != loop[-1]:
loop.append(edgeloop[-1][vert])
break
# check if loop is circular
if loop[0] == loop[-1]:
circular = True
loop = loop[:-1]
else:
circular = False
loops.append([loop, circular])
return(loops)
# gather initial data
def initialise():
object = bpy.context.active_object
if 'MIRROR' in [mod.type for mod in object.modifiers if mod.show_viewport]:
# ensure that selection is synced for the derived mesh
bpy.ops.object.mode_set(mode='OBJECT')
bpy.ops.object.mode_set(mode='EDIT')
bm = bmesh.from_edit_mesh(object.data)
bm.verts.ensure_lookup_table()
bm.edges.ensure_lookup_table()
bm.faces.ensure_lookup_table()
return(object, bm)
# move the vertices to their new locations
def move_verts(object, bm, mapping, move, lock, influence):
if lock:
lock_x, lock_y, lock_z = lock
orient_slot = bpy.context.scene.transform_orientation_slots[0]
custom = orient_slot.custom_orientation
if custom:
mat = custom.matrix.to_4x4().inverted() @ object.matrix_world.copy()
elif orient_slot.type == 'LOCAL':
mat = mathutils.Matrix.Identity(4)
elif orient_slot.type == 'VIEW':
mat = bpy.context.region_data.view_matrix.copy() @ \
object.matrix_world.copy()
else: # orientation == 'GLOBAL'
mat = object.matrix_world.copy()
mat_inv = mat.inverted()
# get all mirror vectors
mirror_Vectors = []
if object.data.use_mirror_x:
mirror_Vectors.append(mathutils.Vector((-1, 1, 1)))
if object.data.use_mirror_y:
mirror_Vectors.append(mathutils.Vector((1, -1, 1)))
if object.data.use_mirror_x and object.data.use_mirror_y:
mirror_Vectors.append(mathutils.Vector((-1, -1, 1)))
z_mirror_Vectors = []
if object.data.use_mirror_z:
for v in mirror_Vectors:
z_mirror_Vectors.append(mathutils.Vector((1, 1, -1)) * v)
mirror_Vectors.extend(z_mirror_Vectors)
mirror_Vectors.append(mathutils.Vector((1, 1, -1)))
for loop in move:
for index, loc in loop:
if mapping:
if mapping[index] == -1:
continue
else:
index = mapping[index]
if lock:
delta = (loc - bm.verts[index].co) @ mat_inv
if lock_x:
delta[0] = 0
if lock_y:
delta[1] = 0
if lock_z:
delta[2] = 0
delta = delta @ mat
loc = bm.verts[index].co + delta
if influence < 0:
new_loc = loc
else:
new_loc = loc * (influence / 100) + \
bm.verts[index].co * ((100 - influence) / 100)
for mirror_Vector in mirror_Vectors:
for vert in bm.verts:
if vert.co == mirror_Vector * bm.verts[index].co:
vert.co = mirror_Vector * new_loc
bm.verts[index].co = new_loc
bm.normal_update()
object.data.update()
bm.verts.ensure_lookup_table()
bm.edges.ensure_lookup_table()
bm.faces.ensure_lookup_table()
# load custom tool settings
def settings_load(self):
lt = bpy.context.window_manager.looptools
tool = self.name.split()[0].lower()
keys = self.as_keywords().keys()
for key in keys:
setattr(self, key, getattr(lt, tool + "_" + key))
# store custom tool settings
def settings_write(self):
lt = bpy.context.window_manager.looptools
tool = self.name.split()[0].lower()
keys = self.as_keywords().keys()
for key in keys:
setattr(lt, tool + "_" + key, getattr(self, key))
# clean up and set settings back to original state
def terminate():
# update editmesh cached data
obj = bpy.context.active_object
if obj.mode == 'EDIT':
bmesh.update_edit_mesh(obj.data, loop_triangles=True, destructive=True)
# ########################################
# ##### Bridge functions #################
# ########################################
# calculate a cubic spline through the middle section of 4 given coordinates
def bridge_calculate_cubic_spline(bm, coordinates):
result = []
x = [0, 1, 2, 3]
for j in range(3):
a = []
for i in coordinates:
a.append(float(i[j]))
h = []
for i in range(3):
h.append(x[i + 1] - x[i])
q = [False]
for i in range(1, 3):
q.append(3.0 / h[i] * (a[i + 1] - a[i]) - 3.0 / h[i - 1] * (a[i] - a[i - 1]))
l = [1.0]
u = [0.0]
z = [0.0]
for i in range(1, 3):
l.append(2.0 * (x[i + 1] - x[i - 1]) - h[i - 1] * u[i - 1])
u.append(h[i] / l[i])
z.append((q[i] - h[i - 1] * z[i - 1]) / l[i])
l.append(1.0)
z.append(0.0)
b = [False for i in range(3)]
c = [False for i in range(4)]
d = [False for i in range(3)]
c[3] = 0.0
for i in range(2, -1, -1):
c[i] = z[i] - u[i] * c[i + 1]
b[i] = (a[i + 1] - a[i]) / h[i] - h[i] * (c[i + 1] + 2.0 * c[i]) / 3.0
d[i] = (c[i + 1] - c[i]) / (3.0 * h[i])
for i in range(3):
result.append([a[i], b[i], c[i], d[i], x[i]])
spline = [result[1], result[4], result[7]]
return(spline)
# return a list with new vertex location vectors, a list with face vertex
# integers, and the highest vertex integer in the virtual mesh
def bridge_calculate_geometry(bm, lines, vertex_normals, segments,
interpolation, cubic_strength, min_width, max_vert_index):
new_verts = []
faces = []
# calculate location based on interpolation method
def get_location(line, segment, splines):
v1 = bm.verts[lines[line][0]].co
v2 = bm.verts[lines[line][1]].co
if interpolation == 'linear':
return v1 + (segment / segments) * (v2 - v1)
else: # interpolation == 'cubic'
m = (segment / segments)
ax, bx, cx, dx, tx = splines[line][0]
x = ax + bx * m + cx * m ** 2 + dx * m ** 3
ay, by, cy, dy, ty = splines[line][1]
y = ay + by * m + cy * m ** 2 + dy * m ** 3
az, bz, cz, dz, tz = splines[line][2]
z = az + bz * m + cz * m ** 2 + dz * m ** 3
return mathutils.Vector((x, y, z))
# no interpolation needed
if segments == 1:
for i, line in enumerate(lines):
if i < len(lines) - 1:
faces.append([line[0], lines[i + 1][0], lines[i + 1][1], line[1]])
# more than 1 segment, interpolate
else:
# calculate splines (if necessary) once, so no recalculations needed
if interpolation == 'cubic':
splines = []
for line in lines:
v1 = bm.verts[line[0]].co
v2 = bm.verts[line[1]].co
size = (v2 - v1).length * cubic_strength
splines.append(bridge_calculate_cubic_spline(bm,
[v1 + size * vertex_normals[line[0]], v1, v2,
v2 + size * vertex_normals[line[1]]]))
else:
splines = False
# create starting situation
virtual_width = [(bm.verts[lines[i][0]].co -
bm.verts[lines[i + 1][0]].co).length for i
in range(len(lines) - 1)]
new_verts = [get_location(0, seg, splines) for seg in range(1,
segments)]
first_line_indices = [i for i in range(max_vert_index + 1,
max_vert_index + segments)]
prev_verts = new_verts[:] # vertex locations of verts on previous line
prev_vert_indices = first_line_indices[:]
max_vert_index += segments - 1 # highest vertex index in virtual mesh
next_verts = [] # vertex locations of verts on current line
next_vert_indices = []
for i, line in enumerate(lines):
if i < len(lines) - 1:
v1 = line[0]
v2 = lines[i + 1][0]
end_face = True
for seg in range(1, segments):
loc1 = prev_verts[seg - 1]
loc2 = get_location(i + 1, seg, splines)
if (loc1 - loc2).length < (min_width / 100) * virtual_width[i] \
and line[1] == lines[i + 1][1]:
# triangle, no new vertex
faces.append([v1, v2, prev_vert_indices[seg - 1],
prev_vert_indices[seg - 1]])
next_verts += prev_verts[seg - 1:]
next_vert_indices += prev_vert_indices[seg - 1:]
end_face = False
break
else:
if i == len(lines) - 2 and lines[0] == lines[-1]:
# quad with first line, no new vertex
faces.append([v1, v2, first_line_indices[seg - 1],
prev_vert_indices[seg - 1]])
v2 = first_line_indices[seg - 1]
v1 = prev_vert_indices[seg - 1]
else:
# quad, add new vertex
max_vert_index += 1
faces.append([v1, v2, max_vert_index,