forked from ZipCPU/wb2axip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
axildouble.v
734 lines (668 loc) · 19.7 KB
/
axildouble.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
////////////////////////////////////////////////////////////////////////////////
//
// Filename: axildouble.v
// {{{
// Project: WB2AXIPSP: bus bridges and other odds and ends
//
// Purpose: Create a special slave which can be used to reduce crossbar
// logic for multiple simplified slaves. This is a companion
// core to the similar axilsingle core, but allowing the slave to
// decode the clock between multiple possible addresses.
//
// To use this, the slave must follow specific (simplified AXI) rules:
//
// Write interface
// 1. The slave must guarantee that AWREADY == WREADY = 1
// (This core doesn't have AWREADY or WREADY inputs)
// 2. The slave must also guarantee that BVALID == $past(AWVALID)
// (This core internally generates BVALID)
// 3. The controller will guarantee that AWVALID == WVALID
// (You can connect AWVALID to WVALID when connecting to your core)
// 4. The controller will also guarantee that BREADY = 1
// (This core doesn't have a BVALID input)
//
// Read interface
// 1. The slave must guarantee that ARREADY == 1
// (This core doesn't have an ARREADY input)
// 2. The slave must also guarantee that RVALID == $past(ARVALID)
// (This core doesn't have an RVALID input, trusting the slave
// instead)
// 3. The controller will guarantee that RREADY = 1
// (This core doesn't have an RREADY output)
//
//
// Why? This simplifies slave logic. Slaves may interact with the bus
// using only the logic below:
//
// always @(posedge S_AXI_ACLK)
// if (AWVALID) case(AWADDR)
// R1: slvreg_1 <= WDATA;
// R2: slvreg_2 <= WDATA;
// R3: slvreg_3 <= WDATA;
// R4: slvreg_4 <= WDATA;
// endcase
//
// always @(*)
// BRESP = 2'b00;
//
// always @(posedge S_AXI_ACLK)
// if (ARVALID)
// case(ARADDR)
// R1: RDATA <= slvreg_1;
// R2: RDATA <= slvreg_2;
// R3: RDATA <= slvreg_3;
// R4: RDATA <= slvreg_4;
// endcase
//
// always @(*)
// RRESP = 2'b00;
//
// This core will then keep track of the more complex bus logic,
// simplifying both slaves and connection logic. Slaves with the more
// complicated (and proper/accurate) logic, that follow the rules above,
// should have no problems with this additional logic.
//
// Performance:
//
// This core can sustain one read/write per clock as long as the upstream
// AXI master keeps S_AXI_[BR]READY high. If S_AXI_[BR]READY ever drops,
// there's some flexibility provided by the return FIFO, so the master
// might not notice a drop in throughput until the FIFO fills.
//
// The more practical performance measure is the latency of this core.
// That I've measured at four clocks.
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
// }}}
// Copyright (C) 2019-2021, Gisselquist Technology, LLC
// {{{
// This file is part of the WB2AXIP project.
//
// The WB2AXIP project contains free software and gateware, licensed under the
// Apache License, Version 2.0 (the "License"). You may not use this project,
// or this file, except in compliance with the License. You may obtain a copy
// of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
//
////////////////////////////////////////////////////////////////////////////////
//
//
`default_nettype none
// `ifdef VERILATOR
// `define FORMAL
// `endif
// }}}
module axildouble #(
// {{{
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_ADDR_WIDTH = 32,
//
// NS is the number of slave interfaces
parameter NS = 8,
//
//
parameter [NS*AW-1:0] SLAVE_ADDR = {
{ 3'b111, {(AW-3){1'b0}} },
{ 3'b110, {(AW-3){1'b0}} },
{ 3'b101, {(AW-3){1'b0}} },
{ 3'b100, {(AW-3){1'b0}} },
{ 3'b011, {(AW-3){1'b0}} },
{ 3'b010, {(AW-3){1'b0}} },
{ 4'b0001,{(AW-4){1'b0}} },
{ 4'b0000,{(AW-4){1'b0}} } },
//
//
parameter [NS*AW-1:0] SLAVE_MASK =
(NS <= 1) ? 0
: { {(NS-2){ 3'b111, {(AW-3){1'b0}} }},
{(2){ 4'b1111, {(AW-4){1'b0}} }}
},
//
//
// LGFLEN specifies the log (based two) of the number of
// transactions that may need to be held outstanding internally.
// If you really want high throughput, and if you expect any
// back pressure at all, then increase LGFLEN. Otherwise the
// default value of 3 (FIFO size = 8) should be sufficient
// to maintain full loading
parameter LGFLEN=3,
//
// If set, OPT_LOWPOWER will set all unused registers, both
// internal and external, to zero anytime their corresponding
// *VALID bit is clear
parameter [0:0] OPT_LOWPOWER = 0
// }}}
) (
// {{{
input wire S_AXI_ACLK,
input wire S_AXI_ARESETN,
//
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [3-1:0] S_AXI_AWPROT,
//
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
//
output wire [2-1:0] S_AXI_BRESP,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
//
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [3-1:0] S_AXI_ARPROT,
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
//
output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [2-1:0] S_AXI_RRESP,
output wire S_AXI_RVALID,
input wire S_AXI_RREADY,
//
//
//
output wire [NS-1:0] M_AXI_AWVALID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [3-1:0] M_AXI_AWPROT,
//
output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
//
input wire [NS*2-1:0] M_AXI_BRESP,
//
output wire [NS-1:0] M_AXI_ARVALID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [3-1:0] M_AXI_ARPROT,
//
input wire [NS*C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [NS*2-1:0] M_AXI_RRESP
// }}}
);
//
// AW, and DW, are short-hand abbreviations used locally.
localparam AW = C_AXI_ADDR_WIDTH;
localparam DW = C_AXI_DATA_WIDTH;
localparam LGNS = $clog2(NS);
//
localparam INTERCONNECT_ERROR = 2'b11;
////////////////////////////////////////////////////////////////////////
//
// Write logic:
//
////////////////////////////////////////////////////////////////////////
//
//
wire awskid_valid, bffull, bempty, write_awskidready,
dcd_awvalid;
reg write_bvalid, write_response;
reg bfull, write_wready, write_no_index;
wire [NS:0] wdecode;
wire [AW-1:0] awskid_addr;
wire [AW-1:0] m_awaddr;
reg [LGNS-1:0] write_windex, write_bindex;
wire [3-1:0] awskid_prot, m_axi_awprot;
wire [LGFLEN:0] bfill;
reg [LGFLEN:0] write_count;
reg [1:0] write_resp;
integer k;
skidbuffer #(.OPT_LOWPOWER(OPT_LOWPOWER), .OPT_OUTREG(0),
.DW(AW+3))
awskid( .i_clk(S_AXI_ACLK),
.i_reset(!S_AXI_ARESETN),
.i_valid(S_AXI_AWVALID),
.o_ready(S_AXI_AWREADY),
.i_data({ S_AXI_AWPROT, S_AXI_AWADDR }),
.o_valid(awskid_valid), .i_ready(write_awskidready),
.o_data({ awskid_prot, awskid_addr }));
wire awskd_stall;
addrdecode #(.AW(AW), .DW(3), .NS(NS),
.SLAVE_ADDR(SLAVE_ADDR),
.SLAVE_MASK(SLAVE_MASK),
.OPT_REGISTERED(1'b1))
wraddr(.i_clk(S_AXI_ACLK), .i_reset(!S_AXI_ARESETN),
.i_valid(awskid_valid && write_awskidready), .o_stall(awskd_stall),
.i_addr(awskid_addr),
.i_data(awskid_prot),
.o_valid(dcd_awvalid), .i_stall(!S_AXI_WVALID),
.o_decode(wdecode), .o_addr(m_awaddr),
.o_data(m_axi_awprot));
always @(*)
write_wready = dcd_awvalid;
assign S_AXI_WREADY = write_wready;
assign M_AXI_AWVALID = (S_AXI_WVALID) ? wdecode[NS-1:0] : 0;
assign M_AXI_AWADDR = m_awaddr;
assign M_AXI_AWPROT = m_axi_awprot;
assign M_AXI_WDATA = S_AXI_WDATA;
assign M_AXI_WSTRB = S_AXI_WSTRB;
assign write_awskidready = (S_AXI_WVALID || !S_AXI_WREADY) && !bfull;
always @(*)
begin
write_windex = 0;
for(k=0; k<NS; k=k+1)
if (wdecode[k])
write_windex = write_windex | k[LGNS-1:0];
end
always @(posedge S_AXI_ACLK)
begin
write_bindex <= write_windex;
write_no_index <= wdecode[NS];
end
initial { write_response, write_bvalid } = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
{ write_response, write_bvalid } <= 0;
else
{ write_response, write_bvalid }
<= { write_bvalid, (S_AXI_WVALID && S_AXI_WREADY) };
always @(posedge S_AXI_ACLK)
if (write_no_index)
write_resp <= INTERCONNECT_ERROR;
else
write_resp <= M_AXI_BRESP[2*write_bindex +: 2];
initial write_count = 0;
initial bfull = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
begin
write_count <= 0;
bfull <= 0;
end else case({ (awskid_valid && write_awskidready),
(S_AXI_BVALID & S_AXI_BREADY) })
2'b01: begin
write_count <= write_count - 1;
bfull <= 1'b0;
end
2'b10: begin
write_count <= write_count + 1;
bfull <= (&write_count[LGFLEN-1:0]);
end
default: begin end
endcase
`ifdef FORMAL
always @(*)
assert(write_count <= { 1'b1, {(LGFLEN){1'b0}} });
always @(*)
assert(bfull == (write_count == { 1'b1, {(LGFLEN){1'b0}} }));
`endif
sfifo #(.BW(2), .OPT_ASYNC_READ(0), .LGFLEN(LGFLEN))
bfifo ( .i_clk(S_AXI_ACLK), .i_reset(!S_AXI_ARESETN),
.i_wr(write_response), .i_data(write_resp), .o_full(bffull),
.o_fill(bfill),
.i_rd(S_AXI_BVALID && S_AXI_BREADY), .o_data(S_AXI_BRESP),
.o_empty(bempty));
`ifdef FORMAL
always @(*)
assert(write_count == bfill
+ (write_response ? 1:0)
+ (write_bvalid ? 1:0)
+ (write_wready ? 1:0));
`ifdef VERIFIC
always @(*)
if (bfifo.f_first_in_fifo)
assert(bfifo.f_first_data != 2'b01);
always @(*)
if (bfifo.f_second_in_fifo)
assert(bfifo.f_second_data != 2'b01);
always @(*)
if (!bempty && (!bfifo.f_first_in_fifo
|| bfifo.rd_addr != bfifo.f_first_addr)
&&(!bfifo.f_second_in_fifo
|| bfifo.rd_addr != bfifo.f_second_addr))
assume(S_AXI_BRESP != 2'b01);
`else
always @(*)
if (!bempty)
assume(S_AXI_BRESP != 2'b01);
`endif
`endif
assign S_AXI_BVALID = !bempty;
`ifdef FORMAL
always @(*)
assert(!bffull || !write_bvalid);
`endif
////////////////////////////////////////////////////////////////////////
//
// Read logic
//
////////////////////////////////////////////////////////////////////////
//
//
wire rempty, rdfull;
wire [LGFLEN:0] rfill;
reg [LGNS-1:0] read_index, last_read_index;
reg [1:0] read_resp;
reg [DW-1:0] read_rdata;
wire read_rwait, arskd_stall;
reg read_rvalid, read_result, read_no_index;
wire [AW-1:0] m_araddr;
wire [3-1:0] m_axi_arprot;
wire [NS:0] rdecode;
addrdecode #(.AW(AW), .DW(3), .NS(NS),
.SLAVE_ADDR(SLAVE_ADDR),
.SLAVE_MASK(SLAVE_MASK),
.OPT_REGISTERED(1'b1))
rdaddr(.i_clk(S_AXI_ACLK), .i_reset(!S_AXI_ARESETN),
.i_valid(S_AXI_ARVALID && S_AXI_ARREADY), .o_stall(arskd_stall),
.i_addr(S_AXI_ARADDR), .i_data(S_AXI_ARPROT),
.o_valid(read_rwait), .i_stall(1'b0),
.o_decode(rdecode), .o_addr(m_araddr),
.o_data(m_axi_arprot));
assign M_AXI_ARVALID = rdecode[NS-1:0];
assign M_AXI_ARADDR = m_araddr;
assign M_AXI_ARPROT = m_axi_arprot;
initial { read_result, read_rvalid } = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
{ read_result, read_rvalid } <= 2'b00;
else
{ read_result, read_rvalid } <= { read_rvalid, read_rwait };
always @(*)
begin
read_index = 0;
for(k=0; k<NS; k=k+1)
if (rdecode[k])
read_index = read_index | k[LGNS-1:0];
end
always @(posedge S_AXI_ACLK)
last_read_index <= read_index;
always @(posedge S_AXI_ACLK)
read_no_index <= rdecode[NS];
always @(posedge S_AXI_ACLK)
read_rdata <= M_AXI_RDATA[DW*last_read_index +: DW];
always @(posedge S_AXI_ACLK)
if (read_no_index)
read_resp <= INTERCONNECT_ERROR;
else
read_resp <= M_AXI_RRESP[2*last_read_index +: 2];
reg read_full;
reg [LGFLEN:0] read_count;
initial { read_count, read_full } = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
{ read_count, read_full } <= 0;
else case({ S_AXI_ARVALID & S_AXI_ARREADY, S_AXI_RVALID & S_AXI_RREADY})
2'b10: begin
read_count <= read_count + 1;
read_full <= &read_count[LGFLEN-1:0];
end
2'b01: begin
read_count <= read_count - 1;
read_full <= 1'b0;
end
default: begin end
endcase
`ifdef FORMAL
always @(*)
assert(read_count <= { 1'b1, {(LGFLEN){1'b0}} });
always @(*)
assert(read_full == (read_count == { 1'b1, {(LGFLEN){1'b0}} }));
`endif
assign S_AXI_ARREADY = !read_full;
sfifo #(.BW(DW+2), .OPT_ASYNC_READ(0), .LGFLEN(LGFLEN))
rfifo ( .i_clk(S_AXI_ACLK), .i_reset(!S_AXI_ARESETN),
.i_wr(read_result), .i_data({ read_rdata, read_resp }),
.o_full(rdfull), .o_fill(rfill),
.i_rd(S_AXI_RVALID && S_AXI_RREADY),
.o_data({ S_AXI_RDATA, S_AXI_RRESP }),.o_empty(rempty));
`ifdef FORMAL
always @(*)
assert(read_count == rfill + read_result + read_rvalid + read_rwait);
`ifdef VERIFIC
always @(*)
if (rfifo.f_first_in_fifo)
assert(rfifo.f_first_data[1:0] != 2'b01);
always @(*)
if (rfifo.f_second_in_fifo)
assert(rfifo.f_second_data[1:0] != 2'b01);
always @(*)
if (!rempty && (!rfifo.f_first_in_fifo
|| rfifo.rd_addr != rfifo.f_first_addr)
&&(!rfifo.f_second_in_fifo
|| rfifo.rd_addr != rfifo.f_second_addr))
assume(S_AXI_RRESP != 2'b01);
`else
always @(*)
if (!rempty)
assume(S_AXI_RRESP != 2'b01);
`endif
`endif
assign S_AXI_RVALID = !rempty;
// verilator lint_off UNUSED
wire unused;
assign unused = &{ 1'b0,
bffull, rdfull, bfill, rfill,
awskd_stall, arskd_stall };
// verilator lint_on UNUSED
`ifdef FORMAL
localparam F_LGDEPTH = LGFLEN+1;
reg f_past_valid;
reg [F_LGDEPTH-1:0] count_awr_outstanding, count_wr_outstanding,
count_rd_outstanding;
wire [(F_LGDEPTH-1):0] f_axi_awr_outstanding,
f_axi_wr_outstanding,
f_axi_rd_outstanding;
wire [1:0] fm_axi_awr_outstanding [0:NS-1];
wire [1:0] fm_axi_wr_outstanding [0:NS-1];
wire [1:0] fm_axi_rd_outstanding [0:NS-1];
reg [NS-1:0] m_axi_rvalid, m_axi_bvalid;
faxil_slave #(// .C_AXI_DATA_WIDTH(C_AXI_DATA_WIDTH),
.C_AXI_ADDR_WIDTH(C_AXI_ADDR_WIDTH),
// .F_OPT_NO_READS(1'b0),
// .F_OPT_NO_WRITES(1'b0),
.F_OPT_XILINX(1),
.F_LGDEPTH(F_LGDEPTH))
properties (
.i_clk(S_AXI_ACLK),
.i_axi_reset_n(S_AXI_ARESETN),
//
.i_axi_awvalid(S_AXI_AWVALID),
.i_axi_awready(S_AXI_AWREADY),
.i_axi_awaddr(S_AXI_AWADDR),
.i_axi_awprot(S_AXI_AWPROT),
//
.i_axi_wvalid(S_AXI_WVALID),
.i_axi_wready(S_AXI_WREADY),
.i_axi_wdata(S_AXI_WDATA),
.i_axi_wstrb(S_AXI_WSTRB),
//
.i_axi_bvalid(S_AXI_BVALID),
.i_axi_bready(S_AXI_BREADY),
.i_axi_bresp(S_AXI_BRESP),
//
.i_axi_arvalid(S_AXI_ARVALID),
.i_axi_arready(S_AXI_ARREADY),
.i_axi_araddr(S_AXI_ARADDR),
.i_axi_arprot(S_AXI_ARPROT),
//
.i_axi_rvalid(S_AXI_RVALID),
.i_axi_rready(S_AXI_RREADY),
.i_axi_rdata(S_AXI_RDATA),
.i_axi_rresp(S_AXI_RRESP),
//
.f_axi_rd_outstanding(f_axi_rd_outstanding),
.f_axi_wr_outstanding(f_axi_wr_outstanding),
.f_axi_awr_outstanding(f_axi_awr_outstanding));
initial f_past_valid = 1'b0;
always @(posedge S_AXI_ACLK)
f_past_valid <= 1'b1;
genvar M;
generate for(M=0; M<NS; M=M+1)
begin : CONSTRAIN_SLAVE_INTERACTIONS
faxil_master #(// .C_AXI_DATA_WIDTH(C_AXI_DATA_WIDTH),
.C_AXI_ADDR_WIDTH(C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH(C_AXI_DATA_WIDTH),
// .F_OPT_NO_READS(1'b0),
// .F_OPT_NO_WRITES(1'b0),
.F_OPT_NO_RESET(1'b1),
.F_LGDEPTH(2))
properties (
.i_clk(S_AXI_ACLK),
.i_axi_reset_n(S_AXI_ARESETN),
//
.i_axi_awvalid(M_AXI_AWVALID[M]),
.i_axi_awready(1'b1),
.i_axi_awaddr(M_AXI_AWADDR),
.i_axi_awprot(M_AXI_AWPROT),
//
.i_axi_wvalid(M_AXI_AWVALID[M]),
.i_axi_wready(1'b1),
.i_axi_wdata(M_AXI_WDATA[C_AXI_DATA_WIDTH-1:0]),
.i_axi_wstrb(M_AXI_WSTRB[C_AXI_DATA_WIDTH/8-1:0]),
//
.i_axi_bvalid(m_axi_bvalid[M]),
.i_axi_bready(1'b1),
.i_axi_bresp(M_AXI_BRESP[2*M +: 2]),
//
.i_axi_arvalid(M_AXI_ARVALID[M]),
.i_axi_arready(1'b1),
.i_axi_araddr(M_AXI_ARADDR),
.i_axi_arprot(M_AXI_ARPROT),
//
.i_axi_rdata(M_AXI_RDATA[M*C_AXI_DATA_WIDTH +: C_AXI_DATA_WIDTH]),
.i_axi_rresp(M_AXI_RRESP[2*M +: 2]),
.i_axi_rvalid(m_axi_rvalid[M]),
.i_axi_rready(1'b1),
//
.f_axi_rd_outstanding(fm_axi_rd_outstanding[M]),
.f_axi_wr_outstanding(fm_axi_wr_outstanding[M]),
.f_axi_awr_outstanding(fm_axi_awr_outstanding[M]));
initial m_axi_bvalid <= 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
m_axi_bvalid[M] <= 1'b0;
else
m_axi_bvalid[M] <= M_AXI_AWVALID[M];
initial m_axi_rvalid[M] <= 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
m_axi_rvalid[M] <= 1'b0;
else
m_axi_rvalid[M] <= M_AXI_ARVALID[M];
always @(*)
assert(fm_axi_awr_outstanding[M] == fm_axi_wr_outstanding[M]);
always @(*)
assert(fm_axi_wr_outstanding[M]== (m_axi_bvalid[M] ? 1:0));
always @(*)
assert(fm_axi_rd_outstanding[M]== (m_axi_rvalid[M] ? 1:0));
end endgenerate
////////////////////////////////////////////////////////////////////////
//
// Properties necessary to pass induction
//
////////////////////////////////////////////////////////////////////////
//
//
always @(*)
assert(S_AXI_WREADY == (wdecode != 0));
`ifdef VERIFIC
always @(*)
assert($onehot0(M_AXI_AWVALID));
always @(*)
assert($onehot0(m_axi_bvalid));
always @(*)
assert($onehot0(m_axi_rvalid));
`endif
always @(*)
begin
count_awr_outstanding = 0;
if (!S_AXI_AWREADY)
count_awr_outstanding = count_awr_outstanding + 1;
if (write_wready)
count_awr_outstanding = count_awr_outstanding + 1;
if (write_bvalid)
count_awr_outstanding = count_awr_outstanding + 1;
if (write_response)
count_awr_outstanding = count_awr_outstanding + 1;
count_awr_outstanding = count_awr_outstanding + bfill;
end
always @(*)
if (S_AXI_ARESETN)
assert(f_axi_awr_outstanding == count_awr_outstanding);
always @(*)
begin
count_wr_outstanding = 0;
if (write_bvalid)
count_wr_outstanding = count_wr_outstanding + 1;
if (write_response)
count_wr_outstanding = count_wr_outstanding + 1;
count_wr_outstanding = count_wr_outstanding + bfill;
end
always @(*)
if (S_AXI_ARESETN)
assert(f_axi_wr_outstanding == count_wr_outstanding);
//
//
//
always @(*)
begin
count_rd_outstanding = 0;
if (read_rwait)
count_rd_outstanding = count_rd_outstanding + 1;
if (read_rvalid)
count_rd_outstanding = count_rd_outstanding + 1;
if (read_result)
count_rd_outstanding = count_rd_outstanding + 1;
count_rd_outstanding = count_rd_outstanding + rfill;
end
always @(*)
if (S_AXI_ARESETN)
assert(f_axi_rd_outstanding == count_rd_outstanding);
////////////////////////////////////////////////////////////////////////
//
// Cover properties
//
////////////////////////////////////////////////////////////////////////
//
//
reg [3:0] cvr_arvalids, cvr_awvalids, cvr_reads, cvr_writes;
initial cvr_awvalids = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
cvr_awvalids <= 0;
else if (S_AXI_AWVALID && S_AXI_AWREADY && !(&cvr_awvalids))
cvr_awvalids <= cvr_awvalids + 1;
initial cvr_arvalids = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
cvr_arvalids <= 0;
else if (S_AXI_ARVALID && S_AXI_ARREADY && !(&cvr_arvalids))
cvr_arvalids <= cvr_arvalids + 1;
initial cvr_writes = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
cvr_writes <= 0;
else if (S_AXI_BVALID && S_AXI_BREADY && !(&cvr_writes))
cvr_writes <= cvr_writes + 1;
initial cvr_reads = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
cvr_reads <= 0;
else if (S_AXI_RVALID && S_AXI_RREADY && !(&cvr_arvalids))
cvr_reads <= cvr_reads + 1;
always @(*)
cover(cvr_awvalids > 4);
always @(*)
cover(cvr_arvalids > 4);
always @(*)
cover(cvr_reads > 4);
always @(*)
cover(cvr_writes > 4);
always @(*)
cover((cvr_writes > 4) && (cvr_reads > 4));
`endif
endmodule
// `ifndef YOSYS
// `default_nettype wire
// `endif