forked from tbwxmu/SAMPN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
328 lines (241 loc) · 10.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import logging
import math
import os
from typing import Callable, List, Tuple, Union
from argparse import Namespace
from sklearn.metrics import auc, mean_absolute_error, mean_squared_error, precision_recall_curve, r2_score,\
roc_auc_score, accuracy_score
import torch, csv
import torch.nn as nn
from torch.optim import Adam, Optimizer
from torch.optim.lr_scheduler import _LRScheduler
from scaler import StandardScaler
from DGLmodels import build_model, QSARmodel
from nn_utils import NoamLR
def get_task_names(path: str, use_compound_names: bool = False) -> List[str]:
"""
Gets the task names from a data CSV file.
:param path: Path to a CSV file.
:param use_compound_names: Whether file has compound names in addition to smiles strings.
:return: A list of task names.
"""
index = 2 if use_compound_names else 1
task_names = get_header(path)[index:]
return task_names
def get_header(path: str) -> List[str]:
"""
Returns the header of a data CSV file.
:param path: Path to a CSV file.
:return: A list of strings containing the strings in the comma-separated header.
"""
with open(path) as f:
header = next(csv.reader(f))
return header
def makedirs(path: str, isfile: bool = False):
"""
Creates a directory given a path to either a directory or file.
If a directory is provided, creates that directory. If a file is provided (i.e. isfiled == True),
creates the parent directory for that file.
:param path: Path to a directory or file.
:param isfile: Whether the provided path is a directory or file.
"""
if isfile:
path = os.path.dirname(path)
if path != '':
os.makedirs(path, exist_ok=True)
def save_checkpoint(path: str,
model: QSARmodel,
scaler: StandardScaler = None,
args: Namespace = None):
"""
Saves a model checkpoint.
:param model: A QSARmodel.
:param scaler: A StandardScaler fitted on the data.
:param features_scaler: A StandardScaler fitted on the features.
:param args: Arguments namespace.
:param path: Path where checkpoint will be saved.
"""
state = {
'args': args,
'state_dict': model.state_dict(),
'data_scaler': {
'means': scaler.means,
'stds': scaler.stds
} if scaler is not None else None,
}
torch.save(state, path)
def load_checkpoint(path: str,
current_args: Namespace = None,
cuda: bool = None,
logger: logging.Logger = None) -> QSARmodel:
"""
Loads a model checkpoint.
:param path: Path where checkpoint is saved.
:param current_args: The current arguments. Replaces the arguments loaded from the checkpoint if provided.
:param cuda: Whether to move model to cuda.
:param logger: A logger.
:return: The loaded QSARmodel.
"""
debug = logger.debug if logger is not None else print
state = torch.load(path, map_location=lambda storage, loc: storage)
args, loaded_state_dict = state['args'], state['state_dict']
if current_args is not None:
args = current_args
args.cuda = cuda if cuda is not None else args.cuda
model = build_model(args)
model_state_dict = model.state_dict()
pretrained_state_dict = {}
for param_name in loaded_state_dict.keys():
if param_name not in model_state_dict:
debug(f'Pretrained parameter "{param_name}" cannot be found in model parameters.')
elif model_state_dict[param_name].shape != loaded_state_dict[param_name].shape:
debug(f'Pretrained parameter "{param_name}" '
f'of shape {loaded_state_dict[param_name].shape} does not match corresponding '
f'model parameter of shape {model_state_dict[param_name].shape}.')
else:
debug(f'Loading pretrained parameter "{param_name}".')
pretrained_state_dict[param_name] = loaded_state_dict[param_name]
model_state_dict.update(pretrained_state_dict)
model.load_state_dict(model_state_dict)
if cuda:
debug('Moving model to cuda')
model = model.cuda()
return model
def load_scalers(path: str) -> Tuple[StandardScaler, StandardScaler]:
"""
Loads the scalers a model was trained with.
:param path: Path where model checkpoint is saved.
:return: A tuple with the data scaler and the features scaler.
"""
state = torch.load(path, map_location=lambda storage, loc: storage)
scaler = StandardScaler(state['data_scaler']['means'],
state['data_scaler']['stds']) if state['data_scaler'] is not None else None
features_scaler = StandardScaler(state['features_scaler']['means'],
state['features_scaler']['stds'],
replace_nan_token=0) if state['features_scaler'] is not None else None
return scaler, features_scaler
def load_args(path: str) -> Namespace:
"""
Loads the arguments a model was trained with.
:param path: Path where model checkpoint is saved.
:return: The arguments Namespace that the model was trained with.
"""
return torch.load(path, map_location=lambda storage, loc: storage)['args']
def load_task_names(path: str) -> List[str]:
"""
Loads the task names a model was trained with.
:param path: Path where model checkpoint is saved.
:return: The task names that the model was trained with.
"""
return load_args(path).task_names
def get_loss_func(args: Namespace) -> nn.Module:
"""
Gets the loss function corresponding to a given dataset type.
:param args: Namespace containing the dataset type ("classification" or "regression").
:return: A PyTorch loss function.
"""
if args.dataset_type == 'classification':
return nn.BCELoss(reduction='none')
if args.dataset_type == 'regression':
return nn.MSELoss(reduction='none')
raise ValueError(f'Dataset type "{args.dataset_type}" not supported.')
def prc_auc(targets: List[int], preds: List[float]) -> float:
"""
Computes the area under the precision-recall curve.
:param targets: A list of binary targets.
:param preds: A list of prediction probabilities.
:return: The computed prc-auc.
"""
precision, recall, _ = precision_recall_curve(targets, preds)
return auc(recall, precision)
def rmse(targets: List[float], preds: List[float]) -> float:
"""
Computes the root mean squared error.
:param targets: A list of targets.
:param preds: A list of predictions.
:return: The computed rmse.
"""
return math.sqrt(mean_squared_error(targets, preds))
def accuracy(targets: List[int], preds: List[float], threshold: float = 0.5) -> float:
"""
Computes the accuracy of a binary prediction task using a given threshold for generating hard predictions.
:param targets: A list of binary targets.
:param preds: A list of prediction probabilities.
:param threshold: The threshold above which a prediction is a 1 and below which (inclusive) a prediction is a 0
:return: The computed accuracy.
"""
hard_preds = [1 if p > threshold else 0 for p in preds]
return accuracy_score(targets, hard_preds)
def get_metric_func(metric: str) -> Callable[[Union[List[int], List[float]], List[float]], float]:
"""
Gets the metric function corresponding to a given metric name.
:param metric: Metric name.
:return: A metric function which takes as arguments a list of targets and a list of predictions and returns.
"""
if metric == 'auc':
return roc_auc_score
if metric == 'prc-auc':
return prc_auc
if metric == 'rmse':
return rmse
if metric == 'mae':
return mean_absolute_error
if metric == 'r2':
return r2_score
if metric == 'accuracy':
return accuracy
raise ValueError(f'Metric "{metric}" not supported.')
def build_optimizer(model: nn.Module, args: Namespace) -> Optimizer:
"""
Builds an Optimizer.
:param model: The model to optimize.
:param args: Arguments.
:return: An initialized Optimizer.
"""
params = [{'params': model.parameters(), 'lr': args.init_lr, 'weight_decay': 0}]
return Adam(params)
def build_lr_scheduler(optimizer: Optimizer, args: Namespace, epoch_steps: int, total_epochs: List[int] = None) -> _LRScheduler:
"""
Builds a learning rate scheduler.
:param optimizer: The Optimizer whose learning rate will be scheduled.
:param args: Arguments.
:param total_epochs: The total number of epochs for which the model will be run.
:return: An initialized learning rate scheduler.
"""
return NoamLR(
optimizer=optimizer,
warmup_epochs=[args.warmup_epochs],
total_epochs=total_epochs or [args.epochs] * args.num_lrs,
steps_per_epoch=epoch_steps,
init_lr=[args.init_lr],
max_lr=[args.max_lr],
final_lr=[args.final_lr]
)
def create_logger(name: str, save_dir: str = None, quiet: bool = False) -> logging.Logger:
"""
Creates a logger with a stream handler and two file handlers.
The stream handler prints to the screen depending on the value of `quiet`.
One file handler (verbose.log) saves all logs, the other (quiet.log) only saves important info.
:param name: The name of the logger.
:param save_dir: The directory in which to save the logs.
:param quiet: Whether the stream handler should be quiet (i.e. print only important info).
:return: The logger.
"""
logger = logging.getLogger(name)
logger.setLevel(logging.DEBUG)
logger.propagate = False
ch = logging.StreamHandler()
if quiet:
ch.setLevel(logging.INFO)
else:
ch.setLevel(logging.DEBUG)
logger.addHandler(ch)
if save_dir is not None:
makedirs(save_dir)
fh_v = logging.FileHandler(os.path.join(save_dir, 'verbose.log'))
fh_v.setLevel(logging.DEBUG)
fh_q = logging.FileHandler(os.path.join(save_dir, 'quiet.log'))
fh_q.setLevel(logging.INFO)
logger.addHandler(fh_v)
logger.addHandler(fh_q)
return logger