-
Notifications
You must be signed in to change notification settings - Fork 2
/
fft.h
119 lines (109 loc) · 5.57 KB
/
fft.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
/*
* fft.h is Based on
* Free FFT and convolution (C)
*
* Copyright (c) 2019 Project Nayuki. (MIT License)
* https://www.nayuki.io/page/free-small-fft-in-multiple-languages
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
* - The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
* - The Software is provided "as is", without warranty of any kind, express or
* implied, including but not limited to the warranties of merchantability,
* fitness for a particular purpose and noninfringement. In no event shall the
* authors or copyright holders be liable for any claim, damages or other
* liability, whether in an action of contract, tort or otherwise, arising from,
* out of or in connection with the Software or the use or other dealings in the
* Software.
*/
#include <math.h>
#include <stdint.h>
static uint16_t reverse_bits(uint16_t x, int n) {
uint16_t result = 0;
for (int i = 0; i < n; i++, x >>= 1)
result = (result << 1) | (x & 1U);
return result;
}
static const float sin_table[] = {
/*
* float has about 7.2 digits of precision
for (uint8_t i = 0; i < FFT_SIZE - (FFT_SIZE / 4); i++) {
printf("% .8f,%c", sin(2 * M_PI * i / FFT_SIZE), i % 8 == 7 ? '\n' : ' ');
}
*/
0.00000000, 0.02454123, 0.04906767, 0.07356456, 0.09801714, 0.12241068, 0.14673047, 0.17096189,
0.19509032, 0.21910124, 0.24298018, 0.26671276, 0.29028468, 0.31368174, 0.33688985, 0.35989504,
0.38268343, 0.40524131, 0.42755509, 0.44961133, 0.47139674, 0.49289819, 0.51410274, 0.53499762,
0.55557023, 0.57580819, 0.59569930, 0.61523159, 0.63439328, 0.65317284, 0.67155895, 0.68954054,
0.70710678, 0.72424708, 0.74095113, 0.75720885, 0.77301045, 0.78834643, 0.80320753, 0.81758481,
0.83146961, 0.84485357, 0.85772861, 0.87008699, 0.88192126, 0.89322430, 0.90398929, 0.91420976,
0.92387953, 0.93299280, 0.94154407, 0.94952818, 0.95694034, 0.96377607, 0.97003125, 0.97570213,
0.98078528, 0.98527764, 0.98917651, 0.99247953, 0.99518473, 0.99729046, 0.99879546, 0.99969882,
1.00000000, 0.99969882, 0.99879546, 0.99729046, 0.99518473, 0.99247953, 0.98917651, 0.98527764,
0.98078528, 0.97570213, 0.97003125, 0.96377607, 0.95694034, 0.94952818, 0.94154407, 0.93299280,
0.92387953, 0.91420976, 0.90398929, 0.89322430, 0.88192126, 0.87008699, 0.85772861, 0.84485357,
0.83146961, 0.81758481, 0.80320753, 0.78834643, 0.77301045, 0.75720885, 0.74095113, 0.72424708,
0.70710678, 0.68954054, 0.67155895, 0.65317284, 0.63439328, 0.61523159, 0.59569930, 0.57580819,
0.55557023, 0.53499762, 0.51410274, 0.49289819, 0.47139674, 0.44961133, 0.42755509, 0.40524131,
0.38268343, 0.35989504, 0.33688985, 0.31368174, 0.29028468, 0.26671276, 0.24298018, 0.21910124,
0.19509032, 0.17096189, 0.14673047, 0.12241068, 0.09801714, 0.07356456, 0.04906767, 0.02454123,
0.00000000, -0.02454123, -0.04906767, -0.07356456, -0.09801714, -0.12241068, -0.14673047, -0.17096189,
-0.19509032, -0.21910124, -0.24298018, -0.26671276, -0.29028468, -0.31368174, -0.33688985, -0.35989504,
-0.38268343, -0.40524131, -0.42755509, -0.44961133, -0.47139674, -0.49289819, -0.51410274, -0.53499762,
-0.55557023, -0.57580819, -0.59569930, -0.61523159, -0.63439328, -0.65317284, -0.67155895, -0.68954054,
-0.70710678, -0.72424708, -0.74095113, -0.75720885, -0.77301045, -0.78834643, -0.80320753, -0.81758481,
-0.83146961, -0.84485357, -0.85772861, -0.87008699, -0.88192126, -0.89322430, -0.90398929, -0.91420976,
-0.92387953, -0.93299280, -0.94154407, -0.94952818, -0.95694034, -0.96377607, -0.97003125, -0.97570213,
-0.98078528, -0.98527764, -0.98917651, -0.99247953, -0.99518473, -0.99729046, -0.99879546, -0.99969882,
};
/***
* dir = forward: 0, inverse: 1
* https://www.nayuki.io/res/free-small-fft-in-multiple-languages/fft.c
*/
static void fft256(float array[][2], const uint8_t dir) {
const uint16_t n = 256;
const uint8_t levels = 8; // log2(n)
const float* const cos_table = &sin_table[64];
const uint8_t real = dir & 1;
const uint8_t imag = ~real & 1;
for (uint16_t i = 0; i < n; i++) {
uint16_t j = reverse_bits(i, levels);
if (j > i) {
float temp = array[i][real];
array[i][real] = array[j][real];
array[j][real] = temp;
temp = array[i][imag];
array[i][imag] = array[j][imag];
array[j][imag] = temp;
}
}
// Cooley-Tukey decimation-in-time radix-2 FFT
for (uint16_t size = 2; size <= n; size *= 2) {
uint16_t halfsize = size / 2;
uint16_t tablestep = n / size;
for (uint16_t i = 0; i < n; i += size) {
for (uint16_t j = i, k = 0; j < i + halfsize; j++, k += tablestep) {
uint16_t l = j + halfsize;
float tpre = array[l][real] * cos_table[k] + array[l][imag] * sin_table[k];
float tpim = -array[l][real] * sin_table[k] + array[l][imag] * cos_table[k] ;
array[l][real] = array[j][real] - tpre;
array[l][imag] = array[j][imag] - tpim;
array[j][real] += tpre;
array[j][imag] += tpim;
}
}
if (size == n) // Prevent overflow in 'size *= 2'
break;
}
}
static inline void fft256_forward(float array[][2]) {
fft256(array, 0);
}
static inline void fft256_inverse(float array[][2]) {
fft256(array, 1);
}