forked from arthurk/bitfinex-ohlc-import
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathload_candle_data.py
67 lines (51 loc) · 2.27 KB
/
load_candle_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# loads candle data saved by bitfinex-ohlc-import
import os
import pandas as pd
import sqlite3
def load_data(pair='btcusd', candle_size='5m', get_timediffs=False, path='~/.bitfinex_data/bitfinex.sqlite3'):
conn = sqlite3.connect(os.path.expanduser(path))
df = pd.read_sql_query("select * from candles_{} where symbol='{}';".format(candle_size, pair), conn)
df['time'] = pd.to_datetime(df['time'], unit='ms', utc=True)
if get_timediffs:
# gets iloc of last timediff that's not the normal timediff
# diffs = df[df['timediff'] > pd.Timedelta('5T')]
#latest_iloc = df.index.get_loc(diffs.index[-1])
df['timediff'] = df['time'].diff()
# need to forward-fill data because low volume times are missing data
# resample, forward filling prices and 0-filling volume
df.set_index('time', inplace=True)
df = df.resample('5T').ffill()
df['new_time'] = df.index
upsampled_idxs = df[df['new_time'] != df.index].index
df.loc[upsampled_idxs, 'volume'] = 0
df.loc[upsampled_idxs, 'open'] = df.loc[upsampled_idxs, 'close']
df.loc[upsampled_idxs, 'high'] = df.loc[upsampled_idxs, 'close']
df.loc[upsampled_idxs, 'low'] = df.loc[upsampled_idxs, 'close']
df.drop(columns='new_time', inplace=True)
for c in df.columns[1:]: # first column is symbol
df[c] = df[c].astype('float')
df.dropna(inplace=True)
df.drop(columns='symbol', inplace=True)
conn.close()
return df
def resample_data(df, timeunit='1H'):
"""
Resamples OHLCV data into OHLCV data with bars the size of timeunit.
timeunit should be a pandas time unit string.
"""
new_df = pd.DataFrame(
{'open': df['open'].resample(timeunit).first(),
'high': df['high'].resample(timeunit).max(),
'low': df['low'].resample(timeunit).min(),
'close': df['close'].resample(timeunit).last(),
'volume': df['volume'].resample(timeunit).sum()}
)
return new_df
def check_for_gaps(df, unit='T'):
"""
Checks to see if any gaps in the data using units. T is minutes.
"""
timediffs = df['time'].diff()
# last_non_unit_diff = timediffs.
if __name__ == "__main__":
df = load_data()