diff --git a/examples/make_music_video.py b/examples/make_music_video.py index 912b369..4b6cfe3 100644 --- a/examples/make_music_video.py +++ b/examples/make_music_video.py @@ -1,29 +1,33 @@ -from stable_diffusion_videos import StableDiffusionWalkPipeline +import random +import torch +from stable_diffusion_videos import StableDiffusionWalkPipeline +from diffusers.utils.import_utils import is_xformers_available from diffusers.models import AutoencoderKL from diffusers.schedulers import LMSDiscreteScheduler -import torch pipe = StableDiffusionWalkPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', - vae=AutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-ema"), torch_dtype=torch.float16, - revision="fp16", safety_checker=None, + vae=AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16).to("cuda"), scheduler=LMSDiscreteScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" ) ).to("cuda") +if is_xformers_available(): + pipe.enable_xformers_memory_efficient_attention() + # I give you permission to scrape this song :) # youtube-dl -f bestaudio --extract-audio --audio-format mp3 --audio-quality 0 -o "music/thoughts.%(ext)s" https://soundcloud.com/nateraw/thoughts audio_filepath = 'music/thoughts.mp3' # Seconds in the song. Here we slice the audio from 0:07-0:16 # Should be same length as prompts/seeds. -audio_offsets = [7, 10, 13, 16] +audio_offsets = [7, 10, 13] # Output video frames per second. # Use lower values for testing (5 or 10), higher values for better quality (30 or 60) @@ -33,18 +37,9 @@ # This array should be `len(prompts) - 1` as its steps between prompts. num_interpolation_steps = [(b-a) * fps for a, b in zip(audio_offsets, audio_offsets[1:])] -prompts = [ - 'Baroque oil painting anime key visual concept art of wanderer above the sea of fog 1 8 1 8 with anime maid, brutalist, dark fantasy, rule of thirds golden ratio, fake detail, trending pixiv fanbox, acrylic palette knife, style of makoto shinkai studio ghibli genshin impact jamie wyeth james gilleard greg rutkowski chiho aoshima', - 'the conscious mind entering the dark wood window into the surreal subconscious dream mind, majestic, dreamlike, surrealist, trending on artstation, by gustavo dore ', - 'Chinese :: by martine johanna and simon stålenhag and chie yoshii and casey weldon and wlop :: ornate, dynamic, particulate, rich colors, intricate, elegant, highly detailed, centered, artstation, smooth, sharp focus, octane render, 3d', - 'Chinese :: by martine johanna and simon stålenhag and chie yoshii and casey weldon and wlop :: ornate, dynamic, particulate, rich colors, intricate, elegant, highly detailed, centered, artstation, smooth, sharp focus, octane render, 3d', -] -seeds = [ - 6954010, - 8092009, - 1326004, - 5019608, -] +prompts = ["a cat with a funny hat", "snoop dogg at the dmv", "steak flavored ice cream"] +seeds = [random.randint(0, 9e9) for _ in range(len(prompts))] + pipe.walk( prompts=prompts, seeds=seeds, @@ -52,7 +47,7 @@ fps=fps, audio_filepath=audio_filepath, audio_start_sec=audio_offsets[0], - batch_size=16, + batch_size=12, # Increase/decrease based on available GPU memory. This fits on 24GB A10 num_inference_steps=50, guidance_scale=15, margin=1.0, diff --git a/examples/run_app.py b/examples/run_app.py index a16c428..ed59bba 100644 --- a/examples/run_app.py +++ b/examples/run_app.py @@ -2,19 +2,23 @@ from diffusers.models import AutoencoderKL from diffusers.schedulers import LMSDiscreteScheduler +from diffusers.utils.import_utils import is_xformers_available import torch + pipe = StableDiffusionWalkPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', - vae=AutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-ema"), torch_dtype=torch.float16, - revision="fp16", safety_checker=None, + vae=AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16).to("cuda"), scheduler=LMSDiscreteScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" ) ).to("cuda") +if is_xformers_available(): + pipe.enable_xformers_memory_efficient_attention() + interface = Interface(pipe) if __name__ == '__main__': diff --git a/examples/run_music_video_app.py b/examples/run_music_video_app.py index 80d0cbe..9eee279 100644 --- a/examples/run_music_video_app.py +++ b/examples/run_music_video_app.py @@ -15,21 +15,23 @@ from diffusers.models import AutoencoderKL from diffusers.schedulers import LMSDiscreteScheduler +from diffusers.utils.import_utils import is_xformers_available import torch import youtube_dl import os pipe = StableDiffusionWalkPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', - vae=AutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-ema"), torch_dtype=torch.float16, - revision="fp16", safety_checker=None, + vae=AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16).to("cuda"), scheduler=LMSDiscreteScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" ) ).to("cuda") +if is_xformers_available(): + pipe.enable_xformers_memory_efficient_attention() def download_example_clip(url, output_dir='./', output_filename='%(title)s.%(ext)s'): if (Path(output_dir) / output_filename).exists(): @@ -284,7 +286,7 @@ def on_generate_music_video_btn_click( inputs=audio, outputs=[audio_start_sec, duration], fn=on_audio_change_or_clear, - cache_examples=True + cache_examples=False ) audio.change(on_audio_change_or_clear, audio, [audio_start_sec, duration]) audio.clear(on_audio_change_or_clear, audio, [audio_start_sec, duration]) diff --git a/requirements.txt b/requirements.txt index 6bfe69b..4e760fc 100644 --- a/requirements.txt +++ b/requirements.txt @@ -6,3 +6,5 @@ gradio librosa av<10.0.0 realesrgan==0.2.5.0 +protobuf==3.20.* +fsspec>=2023.4.0 \ No newline at end of file