-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmwnswtd.m
60 lines (46 loc) · 1.45 KB
/
mwnswtd.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
function im_result = mwnswtd(img)
%MWNSWTD Perform the MW-NSWTD algorithm on img.
% largest window size (must be odd)
w_max_size = 11;
% image information
[height, width, channels] = size(img);
% return image
im_result = zeros(height, width);
% create inner window (size 1)
iw_size = 1;
mask_iw = reshape(sq_mask(w_max_size, 1, iw_size), [], 1);
% prebuild other masks
masks = {};
for w_size = (iw_size + 2):2:w_max_size
masks{end + 1} = reshape(sq_mask(w_max_size, 1, w_size, w_size - 2), [], 1);
end
num_masks = length(masks);
% pad image
border = (w_max_size - 1) / 2;
pad_img = pad_image_symmetric(img, border);
for i = 1:width
for j = 1:height
d = nan;
% reshape window
win = reshape(pad_img(j:j + w_max_size - 1, i:i + w_max_size - 1, :), [], channels);
% get inner window mean
iw_mean = mean(win(mask_iw, :), 1);
% last outer window to pass into loop
ow_mean = mean(win(masks{1}, :), 1);
% for each mask
for k = 2:num_masks
% last outer window is new middle window
mw_mean = ow_mean;
% new outer window
ow_mean = mean(win(masks{k}, :), 1);
% use OSP based on outer window to project both inner and middle window
p_outer = osp(ow_mean);
cd = (iw_mean * p_outer * iw_mean') + (mw_mean * p_outer * mw_mean');
if 0 <= cd
d = max(d, sqrt(cd));
end
end
im_result(j, i) = d;
end
end
end