-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreconstruct.py
executable file
·93 lines (76 loc) · 4.75 KB
/
reconstruct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#!python3
import open3d as o3d
import argparse
def check_positive(value):
ivalue = int(value)
if ivalue <= 0:
raise argparse.ArgumentTypeError("%s has to be a positive int value > 0" % value)
return ivalue
def main():
parser = argparse.ArgumentParser(
description='Reconstruction of point cloud data (PCD) to a reconstructed mesh using Open3D',
)
parser.add_argument('-i', '--input', dest='input', required=True, action='store',
help='point cloud input ply file', type=str)
parser.add_argument('-o', '--output', dest='output', required=True, action='store',
help='mesh output ply file', type=str)
parser.add_argument('--filtered-cloud', dest='filtered_cloud', required=False, type=str)
parser.add_argument('-f', '--filter', dest='filter', required=False, default=True, action='store_true',
help='remove outliers')
parser.add_argument('--f-points', dest='filter_nb_points', required=False, default=10, action='store',
help='filter parameter: The minimum number of neighbour points within the filter radius.',
type=check_positive)
parser.add_argument('--f-radius', dest='filter_radius', required=False, default=0.2, action='store',
help='filter parameter: The radius in which to count for the minimum number of points.',
type=float)
parser.add_argument('--depth', dest='depth', required=False, default=14, action='store',
help='Maximum depth of the tree that will be used for surface reconstruction. '
'Running at depth d corresponds to solving on a grid whose resolution is '
'no larger than 2 ^ d x 2 ^ d x 2 ^ d.' 'Note that since the reconstructor'
' adapts the octree to the sampling density, the specified reconstruction '
'depth is only an upper bound.',
type=check_positive)
parser.add_argument('-n', '--normals', dest='normals', action='store_true', required=False, default=False,
help='esitamte normals')
parser.add_argument('--n-radius', dest='n_radius', action='store', required=False, default=0.3, type=float,
help='radius to consider for the normal estimation.')
parser.add_argument('--n-max-nn', dest='n_max_nn', action='store', required=False, default=30, type=float,
help='maximum number of nearest neighbors for normal estimation.')
parser.add_argument('--linear-fit', dest='linear_fit', required=False, default=False, action='store_true',
help='If true, the reconstructor use linear interpolation to estimate the positions '
'of iso-vertices.')
parser.add_argument('--edge-collapse', dest='edge_collapse', action='store', default=0, type=check_positive,
help='Use Quadric edge collapse, specify the target number of triangles')
args = parser.parse_args()
cloud = o3d.io.read_point_cloud(args.input)
if args.filter:
print("Remove radius outlier...")
cloud, ids = cloud.remove_radius_outlier(args.filter_nb_points, args.filter_radius)
print("Removed", len(ids), "points.")
if args.normals or not cloud.has_normals():
if not cloud.has_normals():
print("No normals in the point cloud, estimating normals...")
else:
print("Estimate normals...")
cloud.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(
radius=args.n_radius, max_nn=args.n_max_nn))
if args.filtered_cloud:
print("Save filtered cloud to", args.filtered_cloud)
o3d.io.write_point_cloud(args.filtered_cloud, cloud, print_progress=True)
print("Reconstructing the PCD to a mesh using poisson...")
mesh, vec = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
cloud, depth=args.depth, linear_fit=args.linear_fit)
print("Remove degenerated, duplicated, non manifold, and unreferenced triangles, edges and vertices...")
mesh = mesh.remove_degenerate_triangles()
mesh = mesh.remove_duplicated_triangles()
mesh = mesh.remove_non_manifold_edges()
mesh = mesh.remove_unreferenced_vertices()
if args.edge_collapse:
print("Quadric edge collapse to a target triangle number %s" % args.edge_collapse)
mesh = mesh.simplify_quadric_decimation(args.edge_collapse)
print("Save mesh to ", args.output, "...")
o3d.io.write_triangle_mesh(args.output, mesh, print_progress=True)
print("Successfully saved mesh to ", args.output)
o3d.visualization.draw_geometries([mesh])
if __name__ == "__main__":
main()