-
Notifications
You must be signed in to change notification settings - Fork 0
/
ptb_word_lm.py
615 lines (513 loc) · 20 KB
/
ptb_word_lm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
"""Example / benchmark for building a PTB LSTM model.
There are 3 supported model configurations:
===========================================
| config | epochs | train | valid | test
===========================================
| small | 13 | 37.99 | 121.39 | 115.91
| medium | 39 | 48.45 | 86.16 | 82.07
| large | 55 | 37.87 | 82.62 | 78.29
The exact results may vary depending on the random initialization.
The hyperparameters used in the model:
- init_scale - the initial scale of the weights
- learning_rate - the initial value of the learning rate
- max_grad_norm - the maximum permissible norm of the gradient
- num_layers - the number of LSTM layers
- num_steps - the number of unrolled steps of LSTM
- hidden_size - the number of LSTM units
- max_epoch - the number of epochs trained with the initial learning rate
- max_max_epoch - the total number of epochs for training
- keep_prob - the probability of keeping weights in the dropout layer
- lr_decay - the decay of the learning rate for each epoch after "max_epoch"
- batch_size - the batch size
- rnn_mode - the low level implementation of lstm cell: one of CUDNN,
BASIC, or BLOCK, representing cudnn_lstm, basic_lstm, and
lstm_block_cell classes.
The data required for this example is in the data/ dir of the
PTB dataset from Tomas Mikolov's webpage:
$ wget http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
$ tar xvf simple-examples.tgz
To run:
$ python ptb_word_lm.py --data_path=simple-examples/data/
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import numpy as np
import tensorflow as tf
import os
import reader
import util
from collections import Counter
from tensorflow.python.client import device_lib
from distutils.version import StrictVersion
flags = tf.flags
logging = tf.logging
flags.DEFINE_string(
"model", "small",
"A type of model. Possible options are: small, medium, large.")
flags.DEFINE_string("data_path", "data",
"Where the training/test data is stored.")
flags.DEFINE_string("save_path", "output",
"Model output directory.")
flags.DEFINE_bool("use_fp16", False,
"Train using 16-bit floats instead of 32bit floats")
flags.DEFINE_integer("num_gpus", 1,
"If larger than 1, Grappler AutoParallel optimizer "
"will create multiple training replicas with each GPU "
"running one replica.")
flags.DEFINE_string("rnn_mode", "cudnn",
"The low level implementation of lstm cell: one of CUDNN, "
"BASIC, and BLOCK, representing cudnn_lstm, basic_lstm, "
"and lstm_block_cell classes.")
flags.DEFINE_string("input_type", "rounds",
"one of the input types: rounds, days, years.")
FLAGS = flags.FLAGS
BASIC = "basic"
CUDNN = "cudnn"
BLOCK = "block"
def data_type():
return tf.float16 if FLAGS.use_fp16 else tf.float32
class PTBInput(object):
"""The input data."""
def __init__(self, config, data, name=None):
self.batch_size = batch_size = config.batch_size
self.num_steps = num_steps = config.num_steps
self.epoch_size = ((len(data) // batch_size) - 1) // num_steps
self.input_data, self.targets = reader.ptb_producer(
data, batch_size, num_steps, name=name)
self.data = data
class PTBModel(object):
"""The PTB model."""
def __init__(self, is_training, config, input_):
self._is_training = is_training
self._input = input_
self._rnn_params = None
self._cell = None
self.batch_size = input_.batch_size
self.num_steps = input_.num_steps
size = config.hidden_size
vocab_size = config.vocab_size
with tf.device("/gpu:0"):
embedding = tf.get_variable(
"embedding", [vocab_size, size], dtype=data_type())
inputs = tf.nn.embedding_lookup(embedding, input_.input_data)
if is_training and config.keep_prob < 1:
inputs = tf.nn.dropout(inputs, config.keep_prob)
output, state = self._build_rnn_graph(inputs, config, is_training)
softmax_w = tf.get_variable(
"softmax_w", [size, vocab_size], dtype=data_type())
softmax_b = tf.get_variable("softmax_b", [vocab_size], dtype=data_type())
logits = tf.nn.xw_plus_b(output, softmax_w, softmax_b)
# Reshape logits to be a 3-D tensor for sequence loss
logits = tf.reshape(logits, [self.batch_size, self.num_steps, vocab_size])
self.pr = tf.nn.softmax(logits, axis=-1)
# Use the contrib sequence loss and average over the batches
loss = tf.contrib.seq2seq.sequence_loss(
logits,
input_.targets,
tf.ones([self.batch_size, self.num_steps], dtype=data_type()),
average_across_timesteps=False,
average_across_batch=True)
# Update the cost
self._cost = tf.reduce_sum(loss)
self._final_state = state
if not is_training:
return
self._lr = tf.Variable(0.0, trainable=False)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(self._cost, tvars),
config.max_grad_norm)
optimizer = tf.train.GradientDescentOptimizer(self._lr)
self._train_op = optimizer.apply_gradients(
zip(grads, tvars),
global_step=tf.train.get_or_create_global_step())
self._new_lr = tf.placeholder(
tf.float32, shape=[], name="new_learning_rate")
self._lr_update = tf.assign(self._lr, self._new_lr)
def _build_rnn_graph(self, inputs, config, is_training):
if config.rnn_mode == CUDNN:
return self._build_rnn_graph_cudnn(inputs, config, is_training)
else:
return self._build_rnn_graph_lstm(inputs, config, is_training)
def _build_rnn_graph_cudnn(self, inputs, config, is_training):
"""Build the inference graph using CUDNN cell."""
inputs = tf.transpose(inputs, [1, 0, 2])
self._cell = tf.contrib.cudnn_rnn.CudnnLSTM(
num_layers=config.num_layers,
num_units=config.hidden_size,
input_size=config.hidden_size,
dropout=1 - config.keep_prob if is_training else 0)
params_size_t = self._cell.params_size()
self._rnn_params = tf.get_variable(
"lstm_params",
initializer=tf.random_uniform(
[params_size_t], -config.init_scale, config.init_scale),
validate_shape=False)
c = tf.zeros([config.num_layers, self.batch_size, config.hidden_size],
tf.float32)
h = tf.zeros([config.num_layers, self.batch_size, config.hidden_size],
tf.float32)
self._initial_state = (tf.contrib.rnn.LSTMStateTuple(h=h, c=c),)
outputs, h, c = self._cell(inputs, h, c, self._rnn_params, is_training)
outputs = tf.transpose(outputs, [1, 0, 2])
outputs = tf.reshape(outputs, [-1, config.hidden_size])
return outputs, (tf.contrib.rnn.LSTMStateTuple(h=h, c=c),)
def _get_lstm_cell(self, config, is_training):
if config.rnn_mode == BASIC:
return tf.contrib.rnn.BasicLSTMCell(
config.hidden_size, forget_bias=0.0, state_is_tuple=True,
reuse=not is_training)
if config.rnn_mode == BLOCK:
return tf.contrib.rnn.LSTMBlockCell(
config.hidden_size, forget_bias=0.0)
raise ValueError("rnn_mode %s not supported" % config.rnn_mode)
def _build_rnn_graph_lstm(self, inputs, config, is_training):
"""Build the inference graph using canonical LSTM cells."""
# Slightly better results can be obtained with forget gate biases
# initialized to 1 but the hyperparameters of the model would need to be
# different than reported in the paper.
def make_cell():
cell = self._get_lstm_cell(config, is_training)
if is_training and config.keep_prob < 1:
cell = tf.contrib.rnn.DropoutWrapper(
cell, output_keep_prob=config.keep_prob)
return cell
cell = tf.contrib.rnn.MultiRNNCell(
[make_cell() for _ in range(config.num_layers)], state_is_tuple=True)
self._initial_state = cell.zero_state(config.batch_size, data_type())
state = self._initial_state
# Simplified version of tf.nn.static_rnn().
# This builds an unrolled LSTM for tutorial purposes only.
# In general, use tf.nn.static_rnn() or tf.nn.static_state_saving_rnn().
#
# The alternative version of the code below is:
#
# inputs = tf.unstack(inputs, num=self.num_steps, axis=1)
# outputs, state = tf.nn.static_rnn(cell, inputs,
# initial_state=self._initial_state)
outputs = []
with tf.variable_scope("RNN"):
for time_step in range(self.num_steps):
if time_step > 0: tf.get_variable_scope().reuse_variables()
(cell_output, state) = cell(inputs[:, time_step, :], state)
outputs.append(cell_output)
output = tf.reshape(tf.concat(outputs, 1), [-1, config.hidden_size])
return output, state
def assign_lr(self, session, lr_value):
session.run(self._lr_update, feed_dict={self._new_lr: lr_value})
def export_ops(self, name):
"""Exports ops to collections."""
self._name = name
ops = {util.with_prefix(self._name, "cost"): self._cost}
ops.update({util.with_prefix(self._name, "pr") : self.pr})
if self._is_training:
ops.update(lr=self._lr, new_lr=self._new_lr, lr_update=self._lr_update)
if self._rnn_params:
ops.update(rnn_params=self._rnn_params)
for name, op in ops.items():
tf.add_to_collection(name, op)
self._initial_state_name = util.with_prefix(self._name, "initial")
self._final_state_name = util.with_prefix(self._name, "final")
util.export_state_tuples(self._initial_state, self._initial_state_name)
util.export_state_tuples(self._final_state, self._final_state_name)
def import_ops(self):
"""Imports ops from collections."""
if self._is_training:
self._train_op = tf.get_collection_ref("train_op")[0]
self._lr = tf.get_collection_ref("lr")[0]
self._new_lr = tf.get_collection_ref("new_lr")[0]
self._lr_update = tf.get_collection_ref("lr_update")[0]
rnn_params = tf.get_collection_ref("rnn_params")
if self._cell and rnn_params:
params_saveable = tf.contrib.cudnn_rnn.RNNParamsSaveable(
self._cell,
self._cell.params_to_canonical,
self._cell.canonical_to_params,
rnn_params,
base_variable_scope="Model/RNN")
tf.add_to_collection(tf.GraphKeys.SAVEABLE_OBJECTS, params_saveable)
self._cost = tf.get_collection_ref(util.with_prefix(self._name, "cost"))[0]
self.pr = tf.get_collection_ref(util.with_prefix(self._name, "pr"))[0]
num_replicas = FLAGS.num_gpus if self._name == "Train" else 1
self._initial_state = util.import_state_tuples(
self._initial_state, self._initial_state_name, num_replicas)
self._final_state = util.import_state_tuples(
self._final_state, self._final_state_name, num_replicas)
@property
def input(self):
return self._input
@property
def initial_state(self):
return self._initial_state
@property
def cost(self):
return self._cost
@property
def final_state(self):
return self._final_state
@property
def lr(self):
return self._lr
@property
def train_op(self):
return self._train_op
@property
def initial_state_name(self):
return self._initial_state_name
@property
def final_state_name(self):
return self._final_state_name
@property
def pr(self):
return self.pr
class SmallConfig(object):
"""Small config."""
init_scale = 0.1
learning_rate = 1.0
max_grad_norm = 5
num_layers = 2
num_steps = 20
hidden_size = 200
max_epoch = 4
max_max_epoch = 13
keep_prob = 1.0
lr_decay = 0.5
batch_size = 20
vocab_size = 33278
rnn_mode = BLOCK
class MediumConfig(object):
"""Medium config."""
init_scale = 0.05
learning_rate = 1.0
max_grad_norm = 5
num_layers = 2
num_steps = 35
hidden_size = 650
max_epoch = 6
max_max_epoch = 39
keep_prob = 0.5
lr_decay = 0.8
batch_size = 20
vocab_size = 33278
rnn_mode = BLOCK
class LargeConfig(object):
"""Large config."""
init_scale = 0.04
learning_rate = 1.0
max_grad_norm = 10
num_layers = 2
num_steps = 35
hidden_size = 1500
max_epoch = 14
max_max_epoch = 55
keep_prob = 0.35
lr_decay = 1 / 1.15
batch_size = 20
vocab_size = 33278
rnn_mode = BLOCK
class TestConfig(object):
"""Tiny config, for testing."""
init_scale = 0.1
learning_rate = 1.0
max_grad_norm = 1
num_layers = 1
num_steps = 2
hidden_size = 2
max_epoch = 1
max_max_epoch = 1
keep_prob = 1.0
lr_decay = 0.5
batch_size = 20
vocab_size = 33278
rnn_mode = BLOCK
class DataPrep(object):
def _init_(self, path):
raw_list = tf.io.read_file(path)
top_words = Counter(raw_list).most_common()
words = [word[0] for word in top_words if word[1] >= 3]
if '<unk>' in words:
words.remove('<unk>')
self.word_dict = {'<unk>': 0}
for i in range(1, len(words)):
self.word_dict[words[i]] = i
self.vocab_size = len(self.word_dict)
self.word_dict_reverse = dict(zip(self.word_dict.values(), self.word_dict.keys()))
self.text_as_index = []
for word in words:
idx = 0
if word in self.word_dict:
idx = self.word_dict[word]
self.text_as_index.append(idx)
def generate_data(self, path):
words = tf.io.read_file(path)
text_as_index = []
for word in words:
idx = 0
if word in self.word_dict:
idx = self.word_dict[word]
text_as_index.append(idx)
return text_as_index
def get_tokens(self, data_path, input_type):
word_to_id = reader._build_vocab(os.path.join(data_path, "wiki.train.txt"))
tens = [i for i in range(10, 100, 10)]
hundreds = [i for i in range(100, 1000, 100)]
rounds_list = tens + hundreds
rounds = set([word_to_id.get(str(i), 0) for i in rounds_list])
days = set([word_to_id.get(str(i+1), 0) for i in range(0, 31)])
years = set([word_to_id.get(str(i+1), 0) for i in range(999, 2020)])
if input_type == 'rounds':
return rounds
elif input_type == 'years':
return years
elif input_type == 'days':
return days
def tok_pos(self, data, batch_size, steps, tokens):
data_length = len(data)
batch_length = data_length // batch_size
data = np.reshape(data[0: batch_size * batch_length], [batch_size, batch_length])
i = 1
while True:
positions = []
for m in range(batch_size):
for n in range(steps):
if data[m][i + n] in tokens:
positions.append((m, n, data[m][i + n]))
if i == batch_length - steps - 1:
i = 1
else:
i += 1
yield positions
def run_epoch(session, model, eval_op=None, verbose=False):
"""Runs the model on the given data."""
start_time = time.time()
costs = 0.0
iters = 0
state = session.run(model.initial_state)
fetches = {
"cost": model.cost,
"pr": model.pr,
"final_state": model.final_state,
}
data_prep = DataPrep()
tokens = data_prep.get_tokens(FLAGS.data_path, FLAGS.input_type)
token_pos = data_prep.tok_pos(model._input.data, model.batch_size, model.num_steps, tokens)
batches_total = 0
sigma = 0
n = 0
if eval_op is not None:
fetches["eval_op"] = eval_op
for step in range(model.input.epoch_size):
feed_dict = {}
for i, (c, h) in enumerate(model.initial_state):
feed_dict[c] = state[i].c
feed_dict[h] = state[i].h
vals = session.run(fetches, feed_dict)
cost = vals["cost"]
state = vals["final_state"]
pr = vals["pr"]
positions = next(token_pos)
if len(positions) > 0:
probs_ = []
for position in positions:
probs_.append(pr[position[0]][position[1]][position[2]])
sigma += np.sum(np.log(np.array(probs_)))
n += len(probs_)
batches_total += (step + 1)
costs += cost
iters += model.input.num_steps
if verbose and step % (model.input.epoch_size // 10) == 10:
print("%.3f perplexity: %.3f speed: %.0f wps" %
(step * 1.0 / model.input.epoch_size, np.exp(costs / iters),
iters * model.input.batch_size * max(1, FLAGS.num_gpus) /
(time.time() - start_time)))
return np.exp((-1)*sigma/n)
def get_config():
"""Get model config."""
config = None
if FLAGS.model == "small":
config = SmallConfig()
elif FLAGS.model == "medium":
config = MediumConfig()
elif FLAGS.model == "large":
config = LargeConfig()
elif FLAGS.model == "test":
config = TestConfig()
else:
raise ValueError("Invalid model: %s", FLAGS.model)
if FLAGS.rnn_mode:
config.rnn_mode = FLAGS.rnn_mode
if FLAGS.num_gpus != 1 or StrictVersion(tf.__version__) < StrictVersion("1.3.0") :
config.rnn_mode = BASIC
return config
def main(_):
if not FLAGS.data_path:
raise ValueError("Must set --data_path to PTB data directory")
gpus = [
x.name for x in device_lib.list_local_devices() if x.device_type == "GPU"
]
if FLAGS.num_gpus > len(gpus):
raise ValueError(
"Your machine has only %d gpus "
"which is less than the requested --num_gpus=%d."
% (len(gpus), FLAGS.num_gpus))
raw_data = reader.ptb_raw_data(FLAGS.data_path)
train_data, valid_data, test_data, _ = raw_data
config = get_config()
eval_config = get_config()
eval_config.batch_size = 1
eval_config.num_steps = 1
with tf.Graph().as_default():
initializer = tf.random_uniform_initializer(-config.init_scale,
config.init_scale)
with tf.name_scope("Train"):
train_input = PTBInput(config=config, data=train_data, name="TrainInput")
with tf.variable_scope("Model", reuse=None, initializer=initializer):
m = PTBModel(is_training=True, config=config, input_=train_input)
tf.summary.scalar("Training Loss", m.cost)
tf.summary.scalar("Learning Rate", m.lr)
with tf.name_scope("Valid"):
valid_input = PTBInput(config=config, data=valid_data, name="ValidInput")
with tf.variable_scope("Model", reuse=True, initializer=initializer):
mvalid = PTBModel(is_training=False, config=config, input_=valid_input)
tf.summary.scalar("Validation Loss", mvalid.cost)
with tf.name_scope("Test"):
test_input = PTBInput(
config=eval_config, data=test_data, name="TestInput")
with tf.variable_scope("Model", reuse=True, initializer=initializer):
mtest = PTBModel(is_training=False, config=eval_config,
input_=test_input)
models = {"Train": m, "Valid": mvalid, "Test": mtest}
for name, model in models.items():
model.export_ops(name)
metagraph = tf.train.export_meta_graph()
if tf.__version__ < "1.1.0" and FLAGS.num_gpus > 1:
raise ValueError("num_gpus > 1 is not supported for TensorFlow versions "
"below 1.1.0")
soft_placement = False
if FLAGS.num_gpus > 1:
soft_placement = True
util.auto_parallel(metagraph, m)
with tf.Graph().as_default():
tf.train.import_meta_graph(metagraph)
for model in models.values():
model.import_ops()
sv = tf.train.Supervisor(logdir=FLAGS.save_path)
config_proto = tf.ConfigProto(allow_soft_placement=soft_placement)
with sv.managed_session(config=config_proto) as session:
for i in range(config.max_max_epoch):
lr_decay = config.lr_decay ** max(i + 1 - config.max_epoch, 0.0)
m.assign_lr(session, config.learning_rate * lr_decay)
print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr)))
train_perplexity = run_epoch(session, m, eval_op=m.train_op,
verbose=True)
print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity))
valid_perplexity = run_epoch(session, mvalid)
print("Epoch: %d Valid Perplexity: %.3f" % (i + 1, valid_perplexity))
test_perplexity = run_epoch(session, mtest)
print("Test Perplexity: %.3f" % test_perplexity)
if FLAGS.save_path:
print("Saving model to %s." % FLAGS.save_path)
sv.saver.save(session, FLAGS.save_path, global_step=sv.global_step)
if __name__ == "__main__":
tf.app.run()