-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathcounter.hpp
544 lines (492 loc) · 27.7 KB
/
counter.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
/*===========================================================================
*
* PUBLIC DOMAIN NOTICE
* National Center for Biotechnology Information
*
* This software/database is a "United States Government Work" under the
* terms of the United States Copyright Act. It was written as part of
* the author's official duties as a United States Government employee and
* thus cannot be copyrighted. This software/database is freely available
* to the public for use. The National Library of Medicine and the U.S.
* Government have not placed any restriction on its use or reproduction.
*
* Although all reasonable efforts have been taken to ensure the accuracy
* and reliability of the software and data, the NLM and the U.S.
* Government do not and cannot warrant the performance or results that
* may be obtained by using this software or data. The NLM and the U.S.
* Government disclaim all warranties, express or implied, including
* warranties of performance, merchantability or fitness for any particular
* purpose.
*
* Please cite the author in any work or product based on this material.
*
* ===========================================================================
*
*/
#ifndef _KmerCounter_
#define _KmerCounter_
#include "Integer.hpp"
#include "common_util.hpp"
namespace DeBruijn {
class CKmerCount {
// Class for kmer counting and searching implemented using a boost::variant of vector<pair<LargeInt<N>,size_t>>
// Currently, maximum N defined in config.hpp is 16 that allows kmers of length at most 512 to be stored.
// Only smaller (in the bit encoding) of a kmer and its reverse complement is stored
//
// When vector is sorted, binary search on the first element of the pair that represents a kmer can be used for retrieving
// the information stored for the kmer in the second element of the pair.
// First 32 bits of the second element stores total count for kmer (self and reverse complement)
// Remaining 32 bits store count for kmer for self only during the counting operations but are modified to additionally store
// branching information when used inside CDBGraph
public:
typedef TKmerCountN Type;
CKmerCount(int kmer_len = 0) : m_kmer_len(kmer_len) {
if(m_kmer_len > 0)
m_container = CreateVariant<TKmerCountN, TLargeIntVec>((m_kmer_len+31)/32);
}
size_t Size() const { return apply_visitor(container_size(), m_container); } // number of elements in the container
void Reserve(size_t rsrv) { apply_visitor(reserve(rsrv), m_container); } // reserves memory for rsrv elements
void Clear() { apply_visitor(clear(), m_container); } // clears container (doesn't release memory)
size_t Capacity() const { return apply_visitor(container_capacity(), m_container); } // tells how many elements could be stored in reserved memory
size_t ElementSize() const { return apply_visitor(element_size(), m_container); } // size of one vector element in bytes
size_t MemoryFootprint() const { return Capacity()*ElementSize(); } // reserved memory in bytes
void PushBack(const TKmer& kmer, size_t count) { // push back one element
if(m_kmer_len == 0)
throw runtime_error("Can't insert in uninitialized container");
apply_visitor(push_back(kmer, count), m_container);
}
void PushBackElementsFrom(const CKmerCount& other) { // push back elements from other container
if(m_kmer_len == 0)
throw runtime_error("Can't insert in uninitialized container");
apply_visitor(push_back_elements(), m_container, other.m_container);
}
size_t Find(const TKmer& kmer) const { return apply_visitor(find_kmer(kmer), m_container); } // finds index for a kmer (returns Size() if not found)
void UpdateCount(size_t count, size_t index) { apply_visitor(update_count(count, index), m_container); } // updates count at the index position
size_t GetCount(size_t index) const { return apply_visitor(get_count(index), m_container); } // gets count at the index position
pair<TKmer,size_t> GetKmerCount(size_t index) const { return apply_visitor(get_kmer_count(index), m_container); } // gets kmer and count at the index position
const uint64_t* getPointer(size_t index) { return apply_visitor(get_pointer(index), m_container); } // gets access to binary kmer sequence
int KmerLen() const { return m_kmer_len; }
void Sort() { apply_visitor(container_sort(), m_container); }
void SortAndExtractUniq(int min_count, CKmerCount& uniq) { // sorts container, aggregates counts, copies elements with count >= min_count into uniq
uniq = CKmerCount(m_kmer_len); // init
Sort();
apply_visitor(extract_uniq(min_count), m_container, uniq.m_container);
}
void SortAndUniq(int min_count) { // sorts container, aggregate counts, keeps elements with count >= min_count
Sort();
apply_visitor(uniq(min_count), m_container);
}
void RemoveLowCountKmers(int min_count) { apply_visitor(remove_low_count(min_count), m_container); }
void MergeTwoSorted(const CKmerCount& other) { // merges with other assuming both sorted
if(m_kmer_len != other.KmerLen())
throw runtime_error("Can't merge kmers of different lengths");
apply_visitor(merge_sorted(), m_container, other.m_container);
}
void Swap(CKmerCount& other) { // swaps with other
swap(m_kmer_len, other.m_kmer_len);
apply_visitor(swap_with_other(), m_container, other.m_container);
}
void Save(ostream& out) const {
out.write(reinterpret_cast<const char*>(&m_kmer_len), sizeof(m_kmer_len));
apply_visitor(save(out), m_container);
if(!out)
throw runtime_error("Error in counter write");
}
void Load(istream& in) {
if(!in.read(reinterpret_cast<char*>(&m_kmer_len), sizeof(m_kmer_len)))
throw runtime_error("Error in counter read");
m_container = CreateVariant<TKmerCountN, TLargeIntVec>((m_kmer_len+31)/32);
apply_visitor(load(in), m_container);
}
private:
struct find_kmer : public boost::static_visitor<size_t> {
find_kmer(const TKmer& k) : kmer(k) {}
template <typename T> size_t operator()(const T& v) const {
typedef typename T::value_type pair_t;
typedef typename pair_t::first_type large_t;
auto it = lower_bound(v.begin(), v.end(), kmer.get<large_t>(), [](const pair_t& element, const large_t& target){ return element.first < target; });
if(it == v.end() || it->first != kmer.get<large_t>())
return v.size();
else
return it-v.begin();
}
const TKmer& kmer;
};
struct reserve : public boost::static_visitor<> {
reserve(size_t r) : rsrv(r) {}
template <typename T> void operator() (T& v) const { v.reserve(rsrv); }
size_t rsrv;
};
struct container_size : public boost::static_visitor<size_t> { template <typename T> size_t operator()(const T& v) const { return v.size();} };
struct container_capacity : public boost::static_visitor<size_t> { template <typename T> size_t operator()(const T& v) const { return v.capacity();} };
struct element_size : public boost::static_visitor<size_t> { template <typename T> size_t operator()(const T& ) const { return sizeof(typename T::value_type);} };
struct clear : public boost::static_visitor<> { template <typename T> void operator()(T& v) const { v.clear();} };
struct push_back : public boost::static_visitor<> {
push_back(const TKmer& k, size_t c) : kmer(k), count(c) {}
template <typename T> void operator() (T& v) const {
typedef typename T::value_type::first_type large_t;
v.push_back(make_pair(kmer.get<large_t>(), count));
}
const TKmer& kmer;
size_t count;
};
struct push_back_elements : public boost::static_visitor<> {
template <typename T> void operator() (T& a, const T& b) const { a.insert(a.end(), b.begin(), b.end()); }
template <typename T, typename U> void operator() (T& , const U& ) const { throw runtime_error("Can't copy from different type container"); }
};
struct merge_sorted : public boost::static_visitor<> {
template <typename T> void operator() (T& a, const T& b) const {
T merged;
merged.reserve(a.size()+b.size());
merge(a.begin(), a.end(), b.begin(), b.end(), back_inserter(merged));
merged.swap(a);
}
template <typename T, typename U> void operator() (T& , const U& ) const { throw runtime_error("Can't merge different type containers"); }
};
struct update_count : public boost::static_visitor<> {
update_count(size_t c, size_t i) : count(c), index(i) {}
template <typename T> void operator() (T& v) const { v[index].second = count; }
size_t count;
size_t index;
};
struct get_count : public boost::static_visitor<size_t> {
get_count(size_t i) : index(i) {}
template <typename T> size_t operator() (T& v) const { return v[index].second; }
size_t index;
};
struct get_kmer_count : public boost::static_visitor<pair<TKmer,size_t>> {
get_kmer_count(size_t i) : index(i) {}
template <typename T> pair<TKmer,size_t> operator() (T& v) const { return make_pair(TKmer(v[index].first), v[index].second); }
size_t index;
};
struct get_pointer : public boost::static_visitor<const uint64_t*> {
get_pointer(size_t i) : index(i) {}
template <typename T> const uint64_t* operator() (T& v) const { return v[index].first.getPointer(); }
size_t index;
};
struct container_sort : public boost::static_visitor<> { template <typename T> void operator() (T& v) const { sort(v.begin(), v.end()); }};
struct swap_with_other : public boost::static_visitor<> {
template <typename T> void operator() (T& a, T& b) const { a.swap(b); }
template <typename T, typename U> void operator() (T& , U& ) const { throw runtime_error("Can't swap different type containers"); }
};
struct remove_low_count : public boost::static_visitor<> {
remove_low_count(int mc) : min_count(mc) {}
template <typename T> void operator() (T& v) const {
v.erase(remove_if(v.begin(), v.end(), [this](const typename T::value_type& pair) { return (uint32_t)pair.second < this->min_count; }), v.end());
}
unsigned min_count;
};
struct uniq : public boost::static_visitor<> {
uniq(int mc) : min_count(mc) {}
template <typename T> void operator() (T& v) const {
typedef typename T::iterator iter_t;
iter_t nextp = v.begin();
for(iter_t ip = v.begin(); ip != v.end(); ) {
iter_t workp = ip;
while(++ip != v.end() && workp->first == ip->first)
workp->second += ip->second; // accumulate all 8 bytes; we assume that count will not spill into higher half
if((uint32_t)workp->second >= min_count)
*nextp++ = *workp;
}
v.erase(nextp, v.end());
}
unsigned min_count;
};
struct extract_uniq : public boost::static_visitor<> {
extract_uniq(int mc) : min_count(mc) {}
template <typename T> void operator() (T& a, T& b) const {
if(a.empty()) return;
size_t num = 1;
uint32_t count = a[0].second; // count only 4 bytes!!!!!!
for(size_t i = 1; i < a.size(); ++i) {
if(a[i-1].first < a[i].first) {
if(count >= min_count)
++num;
count = a[i].second;
} else {
count += a[i].second;
}
}
if(count < min_count)
--num;
b.reserve(num+1);
b.push_back(a[0]);
for(size_t i = 1; i < a.size(); ++i) {
if(b.back().first < a[i].first) {
if((uint32_t)b.back().second < min_count)
b.pop_back();
b.push_back(a[i]);
} else {
b.back().second += a[i].second; // accumulate all 8 bytes; we assume that count will not spill into higher half
}
}
if((uint32_t)b.back().second < min_count)
b.pop_back();
}
template <typename T, typename U> void operator() (T& , U& ) const { throw runtime_error("Can't extract into different type container"); }
unsigned min_count;
};
struct save : public boost::static_visitor<> {
save(ostream& out) : os(out) {}
template <typename T> void operator() (T& v) const {
size_t num = v.size();
os.write(reinterpret_cast<const char*>(&num), sizeof num);
if(num > 0)
os.write(reinterpret_cast<const char*>(&v[0]), num*sizeof(v[0]));
}
ostream& os;
};
struct load : public boost::static_visitor<> {
load(istream& in) : is(in) {}
template <typename T> void operator() (T& v) const {
size_t num;
if(!is.read(reinterpret_cast<char*>(&num), sizeof num))
throw runtime_error("Error in counter read");
if(num > 0) {
v.resize(num);
if(!is.read(reinterpret_cast<char*>(&v[0]), num*sizeof(v[0])))
throw runtime_error("Error in counter read");
}
}
istream& is;
};
Type m_container;
int m_kmer_len;
};
typedef CKmerCount TKmerCount; // for compatibility with previous code
// CKmerCounter counts kmers in reads using multiple threads and stores them in TKmerCount
// It also finds neighbors (in GetBranches) if a user wants to use this class to build a CDBGraph (de Bruijn graph)
// As Kmer counting could be memory expensive, CKmerCounter accepts an upper limit for the memory available and will
// subdivide the task, if needed.
// If the number of subtasks exceeds 10, it will throw an exception asking for more memory.
class CKmerCounter {
public:
// reads - raw reads (ncores or more elements in the list)
// kmer_len - size of kmer
// min_count - minimal count for accepted kmers
// is_stranded - flag indicating whether kmers are from input reads where strand is informative or from connected paired
// reads generated internally by the program where strand is not a meaningful observation
// mem_available - allowed memory in bytes
// ncores - number of cores
CKmerCounter(const list<array<CReadHolder,2>>& reads, int kmer_len, int min_count, bool is_stranded, int64_t mem_available, int ncores) :
m_kmer_len(kmer_len), m_min_count(min_count), m_is_stranded(is_stranded), m_ncores(ncores), m_reads(reads) {
cerr << endl << "Kmer len: " << m_kmer_len << endl;
CStopWatch timer;
timer.Restart();
int64_t raw_kmer_num = 0;
for(const auto& reads : m_reads)
raw_kmer_num += reads[0].KmerNum(m_kmer_len)+reads[1].KmerNum(m_kmer_len);
int64_t GB = 1000000000;
int kmer_size = TKmerCount(m_kmer_len).ElementSize();
int64_t mem_needed = 1.2*raw_kmer_num*kmer_size;
int max_cycles = 10; // maximum cycles allowed
int64_t mbuf = 2*GB; // memory buffer for allocation uncertainity
if(mem_needed >= max_cycles*(mem_available-mbuf)) {
throw runtime_error("Memory provided is insufficient to do runs in 10 cycles for the read coverage. We find that 16 Gb for 20x coverage of a 5 Mb genome is usually sufficient");
}
int cycles = ceil(double(mem_needed)/(mem_available-mbuf));
cerr << "Raw kmers: " << raw_kmer_num << " Memory needed (GB): " << double(mem_needed)/GB << " Memory available (GB): " << double(mem_available-mbuf)/GB << " " << cycles << " cycle(s) will be performed" << endl;
int njobs = 8*m_reads.size(); // many buckets reduce short-lived memory overhead spike in SortAndMergeJob
int kmer_buckets = cycles*njobs;
for(int cycl = 0; cycl < cycles; ++cycl) {
pair<int,int> bucket_range(cycl*njobs, (cycl+1)*njobs-1);
list<vector<TKmerCount>> raw_kmers;
list<function<void()>> jobs;
for(auto& job_input : m_reads) {
if(job_input[0].ReadNum() > 0 || job_input[1].ReadNum() > 0) { // not empty
raw_kmers.push_back(vector<TKmerCount>());
jobs.push_back(bind(&CKmerCounter::SpawnKmersJob, this, ref(job_input), kmer_buckets, bucket_range, ref(raw_kmers.back())));
}
}
RunThreads(ncores, jobs);
// size_t total = 0;
// for(auto& v : raw_kmers) {
// for(auto& tc : v)
// total += tc.MemoryFootprint();
// }
SortAndMergeKmers(raw_kmers);
}
size_t utotal = 0;
for(auto& c : m_uniq_kmers)
utotal += c.Size();
cerr << "Distinct kmers: " << utotal << endl;
cerr << "Kmer count in " << timer.Elapsed();
MergeSortedKmers();
if(m_uniq_kmers.empty())
m_uniq_kmers.push_back(TKmerCount(m_kmer_len));
}
virtual ~CKmerCounter() {}
// reference to counted kmers
TKmerCount& Kmers() { return m_uniq_kmers.front(); }
const TKmerCount& Kmers() const { return m_uniq_kmers.front(); }
// average count of kmers in the histogram with the main peak
double AverageCount() const {
map<int,size_t> bins;
for(size_t index = 0; index < Kmers().Size(); ++index) {
++bins[Kmers().GetCount(index)]; // count clipped to integer automatically
}
TBins hist(bins.begin(), bins.end());
return GetAverageCount(hist);
}
// prepares kmer counts to be used in CDBGraph (de Bruijn graph)
// runs multiple instances of GetBranchesJob
void GetBranches() {
CStopWatch timer;
timer.Restart();
if(Kmers().Size() > 0) {
vector<uint8_t> branches(Kmers().Size());
size_t bucket_size = Kmers().Size()/m_ncores+1;
list<function<void()>> jobs;
for(int i = 0; i < m_ncores; ++i) {
pair<size_t,size_t> range(bucket_size*i,min(bucket_size*(i+1)-1,Kmers().Size()-1));
if(range.second >= range.first)
jobs.push_back(bind(&CKmerCounter::GetBranchesJob, this, range, ref(branches)));
}
RunThreads(m_ncores, jobs);
for(size_t index = 0; index < Kmers().Size(); ++index) {
size_t b = branches[index];
size_t count = Kmers().GetCount(index);
uint32_t total_count = count;
uint32_t plus_count = (count >> 32);
size_t plusf = uint16_t(double(plus_count)/total_count*numeric_limits<uint16_t>::max()+0.5);
Kmers().UpdateCount((plusf << 48)+(b << 32)+total_count, index); // we put strand info and branching in the high half of the count!!!!!
}
}
cerr << "Kmers branching in " << timer.Elapsed();
}
bool IsStranded() const { return m_is_stranded; } // indicates if contains stranded information
private:
// one-thread worker producing kmers and putting them in multiple non-overlapping buckets
// rholder - input reads
// buckets - total number of buckets
// bucket_range - range of buckets used by this worker
// kmers - output kmers
void SpawnKmersJob(const array<CReadHolder,2>& rholder, int buckets, pair<int,int> bucket_range, vector<TKmerCount>& kmers) {
size_t total = rholder[0].KmerNum(m_kmer_len)+rholder[1].KmerNum(m_kmer_len);
size_t reserve = 1.1*total/buckets;
int active_buckets = bucket_range.second-bucket_range.first+1;
kmers.resize(active_buckets, TKmerCount(m_kmer_len));
for(auto& k : kmers)
k.Reserve(reserve);
for(int p = 0; p < 2; ++p) {
for(CReadHolder::kmer_iterator itk = rholder[p].kbegin(m_kmer_len); itk != rholder[p].kend(); ++itk) {
TKmer kmer = *itk;
TKmer rkmer = revcomp(kmer, m_kmer_len);
size_t count = 1;
TKmer* min_kmerp = &rkmer;
if(kmer < rkmer) {
min_kmerp = &kmer;
count += (size_t(1) << 32);
}
int bucket = min_kmerp->oahash()%buckets;
if(bucket < bucket_range.first || bucket > bucket_range.second)
continue;
// good to go
int ind = bucket - bucket_range.first;
if(kmers[ind].Size() == kmers[ind].Capacity()) { //expensive plan B for the case of failed hash uniformity
// cerr << "Warning: Hash uniformity problem" << endl;
TKmerCount bigger(m_kmer_len);
bigger.Reserve(kmers[ind].Size()*1.2);
bigger.PushBackElementsFrom(kmers[ind]);
bigger.Swap(kmers[ind]);
}
kmers[ind].PushBack(*min_kmerp, count);
}
}
}
//SortAndMergeJob briefly doubles the input memory - should be executed in small chunks!!!!!!
// one-thread worker which accepts all containers for a given bucket and merges, sorts and counts them
// group - list of containers
// ukmers - counted kmers
typedef list<TKmerCount*> TContainerPList;
void SortAndMergeJob(TContainerPList group, TKmerCount& ukmers) {
TKmerCount all_kmers(group.front()->KmerLen());
if(group.size() == 1) {
all_kmers.Swap(*group.front());
} else {
size_t total = 0;
for(auto p : group)
total += p->Size();
all_kmers.Reserve(total); // doubles the input memory!!!!
for(auto p : group) {
all_kmers.PushBackElementsFrom(*p);
TKmerCount(p->KmerLen()).Swap(*p);
}
}
all_kmers.SortAndExtractUniq(m_min_count, ukmers);
}
// runs multiple instances of SortAndMergeJob and stores results in m_uniq_kmers
// raw_kmers - input kmers
void SortAndMergeKmers(list<vector<TKmerCount>>& raw_kmers) {
list<function<void()>> jobs;
int bucken_num = raw_kmers.front().size();
for(int bucket = 0; bucket < bucken_num; ++bucket) {
TContainerPList job_input;
for(auto& vec : raw_kmers)
job_input.push_back(&vec[bucket]);
m_uniq_kmers.push_back(TKmerCount());
jobs.push_back(bind(&CKmerCounter::SortAndMergeJob, this, job_input, ref(m_uniq_kmers.back())));
}
RunThreads(m_ncores, jobs);
}
// one-thread worker which merges two sorted buckets
static void MergeSortedJob(TKmerCount& akmers, TKmerCount& bkmers) {
akmers.MergeTwoSorted(bkmers);
TKmerCount(bkmers.KmerLen()).Swap(bkmers); // release bkmers memory
}
// runs multiple instances of MergeSortedJob
// at the end m_uniq_kmers has only one element with final kmers
void MergeSortedKmers() {
CStopWatch timer;
timer.Restart();
while(m_uniq_kmers.size() > 1) {
list<function<void()>> jobs;
for(list<TKmerCount>::iterator first = m_uniq_kmers.begin(); first != m_uniq_kmers.end(); ++first) {
list<TKmerCount>::iterator second = first;
if(++second != m_uniq_kmers.end()) {
jobs.push_back(bind(MergeSortedJob, ref(*first), ref(*second)));
first = second;
}
}
RunThreads(m_ncores, jobs);
for(auto iloop = m_uniq_kmers.begin(); iloop != m_uniq_kmers.end(); ) {
auto it = iloop++;
if(it->Size() == 0)
m_uniq_kmers.erase(it);
}
}
cerr << "Uniq kmers merging in " << timer.Elapsed();
}
// one-thread worker which calculates the branching information (neighbors) for a range of kmers
// range - from,to indexes for kmers
// branches - vector of branching information (one bit is used for each of the eight possible neighbors)
void GetBranchesJob(pair<size_t,size_t> range, vector<uint8_t>& branches) {
TKmer max_kmer(string(m_kmer_len, bin2NT[3]));
for(size_t index = range.first; index <= range.second; ++index) {
pair<TKmer,size_t> kmer_count = Kmers().GetKmerCount(index);
//direct
TKmer shifted_kmer = (kmer_count.first << 2) & max_kmer;
//inverse
TKmer shifted_rkmer = (revcomp(kmer_count.first, m_kmer_len) << 2) & max_kmer;
for(int nt = 0; nt < 4; ++nt) {
TKmer k = shifted_kmer + TKmer(m_kmer_len, nt);
size_t new_index = Kmers().Find(min(k, revcomp(k, m_kmer_len)));
// New kmer is a neighbor if it exists in reads and is not same as current kmer
if(new_index != Kmers().Size() && new_index != index)
branches[index] |= (1 << nt);
k = shifted_rkmer + TKmer(m_kmer_len, nt);
new_index = Kmers().Find(min(k, revcomp(k, m_kmer_len)));
if(new_index != Kmers().Size() && new_index != index)
branches[index] |= (1 << (nt+4));
}
}
}
int m_kmer_len;
int m_min_count;
bool m_is_stranded;
int m_ncores;
const list<array<CReadHolder,2>>& m_reads;
list<TKmerCount> m_uniq_kmers; // storage for kmer buckets; at the end will have one element which is the result
};
} // namespace
#endif /* _KmerCounter_ */