-
Notifications
You must be signed in to change notification settings - Fork 0
/
fuseloop.cpp
848 lines (822 loc) · 38.9 KB
/
fuseloop.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
#include "fuseloop.hpp"
#include "vechash.hpp" // VecHash2 (hash trace of reference loop execution for ref_vloop2)
#include "stringutil.hpp" // vecprt, lcm[from intutil.hpp]
#include <iomanip>
#ifndef MVL
#define MVL 256
#endif
namespace loop {
using namespace std;
static char const* unrollSuggestNames[] = {
"UNR_UNSET",
"UNR_NLOOP1",
"UNR_VLMODJJ",
"UNR_JJMODVL_NORESET",
"UNR_JJMODVL_RESET",
"UNR_JJPOW2_NLOOP",
"UNR_JJPOW2_CYC",
"UNR_JJPOW2_BIG",
"UNR_NLOOP",
"UNR_CYC",
"UNR_DIVMOD" };
#ifndef NDEBUG // for range assertion
static int const nNames = sizeof(unrollSuggestNames) / sizeof(char const*);
#endif
static char const* unrollSuggestDescr[] = {
"uninitialized",
"no loop [precalc, never unroll]",
"trivial vl%jj==0 update [no precalc, any small unroll]",
"trivial jj%vl==0 update [no precalc, any small unroll]",
"trivial jj%vl==0 update w/ reset [no precalc, any small unroll] XXX check for bcyc_regs or nloop XXX",
"jj=2^N [precalc, full unroll by nloop]",
"jj=2^N [precalc, [partial?] cyclic unroll]",
"jj=2^N large period [easy updated, no precalc, any small unroll)",
"full precalc [induce via mov+mov] full unroll",
"precalc b[] [and a?], [partial?] cyclic unroll [induce by mov+add]",
"no precalc, any small unroll [induce via divmod (slowest)]" };
static_assert( sizeof(unrollSuggestDescr) == sizeof(unrollSuggestNames), "mismatched array sizes");
char const* name( enum Unroll const unr ){
assert( (int)unr >= 0 && (int)unr < nNames );
return unrollSuggestNames[unr];
}
char const* desc( enum Unroll const unr ){
assert( (int)unr >= 0 && (int)unr < nNames );
return unrollSuggestDescr[unr];
}
std::ostream& operator<<(std::ostream& os, enum Unroll unr){
return os<<name(unr)
//<<"("<<(int)unr<<")"
<<"{"<<desc(unr)<<"}";
}
int64_t ve_vlen_suggest_equ(int64_t const nitems){
int const v=0; // verbose
int64_t ret=MVL;
//bool x0_check_vl = true;
if( nitems <= MVL ){
ret = nitems; // trivial: only once through the loop
}else{
int64_t const nFull = nitems/MVL;
int64_t const nLoops = (nitems+MVL-1)/MVL;
int64_t const rem = nitems%MVL;
if(v>0)cout<<" nFull="<<nFull<<" rem="<<rem<<" nLoops="<<nLoops<<endl;
//if(rem+32 >= MVL){ // rem also large, latency already roughly equal.
// ret = MVL; } else
if( nitems%nLoops == 0 ){
// this is "good enough" for vector latency, but more importantly
// avoids some special handling for last-time-through-loop.
ret = nitems/nLoops;
if(v>0)cout<<"loop 0.."<<nitems<<" vlen perfect division as "<<ret<<"*"<<nitems/ret<<endl;
//x0_check_vl = false;
}else{ // redistribute...
// we need some remainder, set up a "nice" main vector length
// DO NOT use rem as loop entry value, only as last-time-through value.
// [ vector inductions REQUIRE last-loop vlen <= main vlen ]
int64_t vleq = (nitems+nLoops-1) / nLoops;
//
// Note: above ensures that remainder (vector length for last pass)
// is always less than vleq.
// For example, N=257, MVL=256 should not use 128+129.
// Instead, we propose 160+97
//
// Why? you will usually set up vector loop induction for the initial
// vector length, which may then be inalid if vector length ever
// increases (but stays OK if you shorten vector length).
//
// I.e. you can choose between
// A. ignoring correct unused values, and
// B. using incorrect [uncalculated?] extra values
// during the last loop pass. (A.) is much better.
//
if(v>0)cout<<" vleq="<<vleq<<" = "<<nitems<<"/"<<nLoops<<" = nitems/nLoops"<<endl;
assert( vleq <= MVL );
if( nitems%vleq != 0 ){
//vleq = (vleq+31)/32*32;
//if(v>0)cout<<"vleq rounded up to "<<vleq<<endl;
ret = vleq;
if(v>0)cout<<"loop 0.."<<nitems<<" vlen redistributed from "<<MVL<<"*"<<nFull<<"+"<<rem
<<" to "<<vleq<<"*"<<nitems/vleq<<"+"<<nitems%vleq<<endl;
// Paranoia: if we somehow increased loop count, this logic has a bug
assert( (nitems+vleq-1)/vleq == nLoops );
}
}
}
return ret;
}
int64_t ve_vlen_suggest(int64_t const nitems){
int const v=0; // verbose
int64_t ret=MVL;
//bool x0_check_vl = true;
if( nitems <= MVL ){
ret = nitems; // trivial: only once through the loop
}else{
int64_t const nFull = nitems/MVL;
int64_t const nLoops = (nitems+MVL-1)/MVL;
int64_t const rem = nitems%MVL;
if(v>0)cout<<" nFull="<<nFull<<" rem="<<rem<<" nLoops="<<nLoops<<endl;
if(rem+32 >= MVL){ // rem also large, latency already roughly equal.
ret = MVL;
}else if( nitems%nLoops == 0 ){
// this is "good enough" for vector latency, but more importantly
// avoids some special handling for last-time-through-loop.
ret = nitems/nLoops;
if(v>0)cout<<"loop 0.."<<nitems<<" vlen perfect division as "<<ret<<"*"<<nitems/ret<<endl;
//x0_check_vl = false;
}else{ // redistribute...
// we need some remainder, set up a "nice" main vector length
// DO NOT use rem as loop entry value, only as last-time-through value.
// [ vector inductions REQUIRE last-loop vlen <= main vlen ]
int64_t vleq = (nitems+nLoops-1) / nLoops;
//
// Note: above ensures that remainder (vector length for last pass)
// is always less than vleq.
// For example, N=257, MVL=256 should not use 128+129.
// Instead, we propose 160+97
//
// Why? you will usually set up vector loop induction for the initial
// vector length, which may then be inalid if vector length ever
// increases (but stays OK if you shorten vector length).
//
// I.e. you can choose between
// A. ignoring correct unused values, and
// B. using incorrect [uncalculated?] extra values
// during the last loop pass. (A.) is much better.
//
if(v>0)cout<<" vleq="<<vleq<<" = "<<nitems<<"/"<<nLoops<<" = nitems/nLoops"<<endl;
assert( vleq <= MVL );
if( nitems%vleq == 0 ){
}else{
// guess latency increments for VE as vector length passes multiples of 32
// so round "main" vector up to a multiple of 32 (take whatever remains as remainder)
vleq = (vleq+31)/32*32;
if(v>0)cout<<"vleq rounded up to "<<vleq<<endl;
ret = vleq;
if(v>0)cout<<"loop 0.."<<nitems<<" vlen redistributed from "<<MVL<<"*"<<nFull<<"+"<<rem
<<" to "<<vleq<<"*"<<nitems/vleq<<"+"<<nitems%vleq<<endl;
// Paranoia: if we somehow increased loop count, this logic has a bug
assert( (nitems+vleq-1)/vleq == nLoops );
}
}
}
return ret;
}
std::string str(UnrollSuggest const& u, std::string const& pfx /*=""*/){
std::ostringstream oss;
if(!pfx.empty()) oss<<" "<<pfx<<" ";
int64_t const iijj = u.ii * u.jj;
int vl = u.vl; // but we might suggest a lower vector length:
if( u.vll != 0 ){
assert( u.vll > 0 );
assert( u.vll <= vl );
// vl = u.vll; NO -- this makes later assertions fail.
}
//uint64_t vlen_equ = ve_vlen_suggest(iijj);
//oss<<" // ve_vlen_suggest(iijj)="<<vlen_equ<<" (no jj effect, just equitable loop load)"<<endl;
oss<<"vl,ii,jj,maxun="<<u.vl<<","<<u.ii<<","<<u.jj<<","
<<u.b_period_max<<" "<<u.suggested;
if(u.vl>0 && u.ii>0 && u.jj>0 && u.suggested!=UNR_UNSET){
if(u.unroll>0) oss<<" unroll="<<u.unroll;
if(u.cycle>0) oss<<" cycle="<<u.cycle;
int const nloop = (iijj+vl-1) / vl; // div_round_up(iijj,vl)
int const lcm_vljj = lcm(vl,u.jj);
int const b_period = lcm_vljj / vl;
int const bcyc_regs = (nloop<b_period? nloop: b_period);
if(1){ // debug
cout<<" vl,ii,jj,maxun="<<u.vl<<"["<<u.vll<<"],"<<u.ii<<","<<u.jj
<<","<<u.b_period_max;
cout<<" iijj="<<iijj;
cout<<" nloop="<<u.nloop;
cout<<" b_period="<<b_period;
cout<<" bcyc_regs="<<bcyc_regs
<<" unroll="<<u.unroll
<<" cycle="<<u.cycle
<<endl;
cout.flush();
}
oss<<" nloop="<<u.nloop;
if(nloop>1) oss<<" b_period="<<b_period;
int const unroll_any = min(nloop,abs(u.b_period_max));
int unroll_cyc = bcyc_regs; // or some small multiple
if(bcyc_regs>0) unroll_cyc = unroll_any/bcyc_regs*bcyc_regs;
// if specific unroll factors are needed, print them.
switch(u.suggested){
case(UNR_UNSET): break;
case(UNR_NLOOP1): oss<<" no loop"; break;
case(UNR_VLMODJJ): oss<<" unroll("<<unroll_any<<")"; break;
// jj%vl == 0
case(UNR_JJMODVL_NORESET): oss<<" unroll("<<unroll_any<<")"; break;
case(UNR_JJMODVL_RESET): oss<<" unroll("<<unroll_any<<")"; break;
// isPositivePow2(jj)
case(UNR_JJPOW2_NLOOP): oss<<" unroll("<<nloop<<")";
assert(u.unroll==nloop);
break;
case(UNR_JJPOW2_CYC): oss<<" unroll("<<unroll_cyc<<")"
<<" bcyc_regs="<<bcyc_regs
<<" u.unroll="<<u.unroll;
assert(u.unroll%bcyc_regs==0);
break;
case(UNR_JJPOW2_BIG): oss<<" unroll("<<unroll_any<<")"; break;
case(UNR_NLOOP): oss<<" unroll by "<<nloop;
assert(u.unroll==nloop);
break;
case(UNR_CYC): oss<<" unroll("<<unroll_cyc<<")";
assert(u.unroll%bcyc_regs==0);
break;
// generic div-mod
case(UNR_DIVMOD): oss<<" unroll("<<unroll_any<<")"; break;
}
}
if(u.vll) oss<<" [Alt vll="<<u.vll<<"]";
uint64_t vlen_equ = ve_vlen_suggest(iijj);
uint64_t vlen_equ_min = ve_vlen_suggest_equ(iijj);
oss<<"[Equ "<<vlen_equ<<" "<<vlen_equ_min<<"]";
//oss<<"\n";
return oss.str();
}
std::ostream& operator<<(std::ostream& os, UnrollSuggest const& u){
return os<<str(u);
}
/** \c b_period_max and unroll limits are similar.
* -ve implies NEVER unroll (maxun=0 or 1).
* The limit can gaurd against precalculating to many registers.
*
* - ret.b_period_max is +/-, and related to ret.cycle and ret.unroll.
* - ret.unroll is always calculated, but b_period_max -ve means you should ignore it.
* - ret.cycle influences how much can be precalculated.
*/
UnrollSuggest unroll_suggest( int const vl, int const ii, int const jj, int b_period_max,
int const v/*verbose=0*/ ){
int64_t const iijj = ii * jj;
int const nloop = (iijj+vl-1) / vl; // div_round_up(iijj,vl)
enum Unroll strategy = UNR_DIVMOD;
UnrollSuggest ret(vl,ii,jj,b_period_max);
int const maxun = (b_period_max>0? b_period_max: 0);
if(b_period_max<0) b_period_max = -b_period_max;
if(v>1)cout<<"\nUNROLL_SUGGEST\n";
bool const jj_pow2 = positivePow2(jj);
int const jj_shift = positivePow2Shift((uint32_t)jj);
// Note: I began with a simple cyclic case, jj%vl==0.
// In general, the period for b[] vectors is lcm(vl,jj)/vl
// Ex. vl=6, jj=8 --> lcm(6,8)/6=24/6 = 4 b[0] cycle={0,6,4,2}
// Ex. vl=6, jj=9 --> lcm(6,9)/6=18/6 = 3 b[0] cycle={0,6,3}
// Ex. vl=9, jj=6 --> lcm(6,9)/9=18/9 = 2 b[0] cycle={0,3}
int const lcm_vljj = lcm(vl,jj);
int const b_period = lcm_vljj / vl;
char const * b_period_pow2 = (b_period > 1 && positivePow2(b_period)? " 2^k": "");
// opt: if nloop is low, can also precalc (whether or not it is periodic)
int const bcyc_regs = (nloop<b_period? nloop: b_period);
#ifndef NDEBUG // for assertion only
bool const have_b_period = true //jj>1 /*&& jj>=b_period*/
&& bcyc_regs > 1 && bcyc_regs < b_period_max
&& !(nloop>1 && vl%jj==0)
//&& !have_jjMODvl
&& !(nloop>1 && vl%jj!=0 && jj%vl!=0) // ???
&& !(b_period>1 && !(nloop>1 && jj%vl==0) && jj_pow2 && bcyc_regs<b_period_max)
;
#endif
// Adjust default values:
//ret.vll [0]
//ret.nloop
//ret.unroll [0]
//ret.cycle [0]
//
// We cannot nicely do a generic loop cycling over S registers, because Aurora
// has no load instructions like Sx = S[Sw], where Sw is a cyclic register index.
//
// Aurora has register-indirect addressing M[V[Sw]] only for some vector ops,
// [scatter/gather]
// and even there it is not loading register values, but memory values.
//
// if have_jjMODvl, this is an easy generic-loop case (treated here)
// else if have_b_period and nloop > bcyc_regs, this is a "Partial Unroll"
// (using a set of predefined bcyc_regs vector registers)
// else if nloop < b_period_max, this is a "full unroll" that can re-use precalc a[] & b[]
// else if nloop < b_period, a full unroll would use too many regs to precalc a[] & b[]
//
// The following logic **suggests** that unrolling has 3 case:
// 1. full precalc unroll (nicest case)
// 2. partial precalc unroll (still looped) (fairly nice)
// 3. full unroll (no precalc) (always possible)
// 1. and 2. are worth considering when:
// - ii,jj loops are both enclosed in outer loops
// - OR partial precalc reduces full unroll code size greatly.
// Any unroll can be chosen for trivial updates:
// - have vl%jj==0
// - have jj%vl==0
// Precalc for a jj_pow2 case may or may not be good.
if( nloop == 1 ){
ret.suggested = strategy = UNR_NLOOP1;
ret.vl = iijj;
if(v>0)cout<<" A.vl,ii,jj="<<vl<<","<<ii<<","<<jj<<" nloop="<<nloop<<" "
<<strategy<<"\n\t"
<<", b_period="<<b_period<<b_period_pow2<<" no loop [precalc, no unroll]"<<endl;
}else if( vl%jj == 0 ){
ret.suggested = strategy = UNR_VLMODJJ;
if(v>0)cout<<" B.vl,ii,jj="<<vl<<","<<ii<<","<<jj<<" nloop="<<nloop<<" "
<<strategy<<"\n\t"
<<", b_period="<<b_period
<<" has a trivial vl%jj==0 update [no precalc, any small unroll]"
<<endl;
//assert( !have_b_period );
}else if( jj%vl == 0 ){
uint32_t const period = jj/vl;
// fuse2.cpp shows 4 different update impls, one being trivial
// debug -- NORESET is definitely attainable
//bool const have_jjMODvl_reset = (vl0%jj!=0 && jj%vl0==0 && nloop >jj/vl0); // case 'g'
//bool const have_jjMODvl = (vl0%jj!=0 && jj%vl0==0 && nloop>=jj/vl0);
//assert( have_jjMODvl );
if((uint32_t)nloop > period){ // have_jjMODvl_reset
//assert(have_jjMODvl_reset);
ret.suggested = strategy = UNR_JJMODVL_RESET;
// depending on period==2, other power-of-two, or anything else,
// have 3 different simple updates.
if(v>0)cout<<" C.vl,ii,jj="<<vl<<","<<ii<<","<<jj<<" nloop="<<nloop<<" "
<<strategy<<"\n\t"
<<", b_period="<<b_period<<b_period_pow2
<<" has a simple jj%vl==0 update [no precalc, any small unroll]"
<<endl;
if(period <= (uint32_t)b_period_max){
ret.unroll = (uint32_t)b_period_max/period*period;
ret.cycle = period;
}else{
ret.unroll = b_period_max;
ret.cycle = 0;
}
}else{
// update is trivial FOR(i,vl) b[i] = b[i] + vl;
ret.suggested = strategy = UNR_JJMODVL_NORESET;
if(v>0)cout<<" c.vl,ii,jj="<<vl<<","<<ii<<","<<jj<<" nloop="<<nloop<<" "
<<strategy<<"\n\t"
<<", b_period="<<b_period<<b_period_pow2
<<" has a trivial jj%vl==0 update [no precalc, any small unroll]"
<<endl;
ret.unroll = min(b_period_max,nloop);
ret.cycle = 0;
}
//assert( !have_b_period );
//assert("Never got case B"==nullptr);
}else if( jj_pow2 ){
if(nloop < b_period_max){
ret.suggested = strategy = UNR_JJPOW2_NLOOP;
if(v>0)cout<<" D.vl,ii,jj="<<vl<<","<<ii<<","<<jj<<" nloop="<<nloop<<" "
<<strategy<<"\n\t"
<<", b_period="<<b_period<<b_period_pow2<<", bcyc_regs="<<bcyc_regs
<<" has jj=2^"<<jj_shift<<" with precalc unroll(nloop="<<nloop<<")"
<<endl;
ret.unroll = nloop;
ret.cycle = ret.unroll;
}else if(bcyc_regs < b_period_max){
ret.suggested = strategy = UNR_JJPOW2_CYC;
if(v>0)cout<<" E.vl,ii,jj="<<vl<<","<<ii<<","<<jj<<" nloop="<<nloop<<" "
<<strategy<<"\n\t"
<<", b_period="<<b_period<<b_period_pow2<<", bcyc_regs="<<bcyc_regs
<<" has jj=2^"<<jj_shift<<" with precalc unroll(bcyc_regs="<<bcyc_regs<<")"
<<endl;
//assert( have_b_period );
ret.unroll = b_period_max/bcyc_regs*bcyc_regs;
ret.cycle = bcyc_regs;
}else{
ret.suggested = strategy = UNR_JJPOW2_BIG;
if(v>0)cout<<" F.vl,ii,jj="<<vl<<","<<ii<<","<<jj<<" nloop="<<nloop<<" "
<<strategy<<"\n\t"
<<", b_period="<<b_period<<b_period_pow2<<", bcyc_regs="<<bcyc_regs
<<" has jj=2^"<<jj_shift<<" easy update, but large period [no precalc, any small unroll]"
<<endl;
ret.unroll = min(b_period_max,nloop);
}
}else if( nloop < b_period_max ){ // small nloop, any b_period
ret.suggested = strategy = UNR_NLOOP;
if(v>0)cout<<" G.vl,ii,jj="<<vl<<","<<ii<<","<<jj<<" nloop="<<nloop<<" "
<<strategy<<"\n\t"
<<", b_period="<<b_period<<b_period_pow2
<<" suggest full precalc unroll(nloop="<<nloop<<")\n"
<<" Then a[]-b[] induction is 2 ops total, mov/mov from precalc regs to working"
<<endl;
ret.unroll = nloop;
// no. also ok for non-cyclic and low nloop ... assert( have_b_period );
}else if( bcyc_regs < b_period_max ){ // small b_period, high nloop
ret.suggested = strategy = UNR_CYC;
if(v>0)cout<<" H.vl,ii,jj="<<vl<<","<<ii<<","<<jj<<" nloop="<<nloop<<" "
<<strategy<<"\n\t"
<<", b_period="<<b_period<<b_period_pow2
<<" suggest partial precalc unroll(b_period="<<b_period<<")\n"
<<" b[] and a[]-INCREMENT cycle through precalc values\n"
<<" Then a[]-b[] induction is 2 ops total, mov/add from precalc regs to working"
<<endl;
// no...assert( have_b_period );
//assert(" never get to H"==nullptr);
//ret.unroll = b_period; // XXX or maybe b_period * N < b_period_max ??? XXX
ret.unroll = b_period_max/b_period*b_period;
ret.cycle = b_period;
}else{ // nloop and b_period both high OR this is a simpler case
ret.suggested = strategy = UNR_DIVMOD;
if(v>0)cout<<" I.vl,ii,jj="<<vl<<","<<ii<<","<<jj<<" nloop="<<nloop<<" "
<<strategy<<"\n\t"
<<", b_period="<<b_period<<b_period_pow2<<" both high:"
<<" full unroll(nloop="<<nloop<<") [no precalc] still possible"
<<endl;
assert( !have_b_period );
ret.unroll = min(b_period_max,nloop);
}
#if 0
// example code for precalc-unroll
// bcyc and acyc may be precalculated registers (or possibly loaded from .rodata)
VVlpi bcyc[bcyc_regs][vl], aDcyc[bcyc_regs][vl];
if( have_b_period ){
// precalculate either acyc ~ a[...][vl] and bcyc ~ b[...][vl]
// or acyc ~ aDelta[...][vl] and bcyc ~ b[...][vl] (nloop <= b_period)
assert( jj > 1 );
assert( b_period > 1 );
assert( !jj_pow2 );
for(int cyc=0; cyc < bcyc_regs && cnt < iijj; cnt+=vl, ++cyc )
{
VVlpi a0[vl];
int const bogus=666;
if(cyc==0){
if(jj>=vl) FOR(i,vl) { a[i]=0; b[i]=i; }
else FOR(i,vl) { a[i] = jj_M*sq[i] >> C; b[i] = sq[i] - a[i]*jj;
++cnt_sq; ++cnt_jj_M;
assert( have_sq ); assert( have_jj_M );
}
FOR(i,vl) acyc[0/*cyc*/][i] = a[i]; // final value, if nloop<b_period
}else{
assert( nloop > 1 );
assert( !(vl%jj==0) );
if( vl%jj==0 ) assert( !(jj%vl==0) );
FOR(i,vl) bA[i] = vl + b[i]; // add_vsv
FOR(i,vl) bD[i] = ((jj_M*bA[i]) >> C); // fastdiv_uB : mul_vvs, shr_vs
FOR(i,vl) b [i] = bA[i] - bD[i]*jj; // long-hand : mul_vvs, sub_vvv
FOR(i,vl) a [i] = a[i] + bD[i]; // add_vvv
if( nloop < b_period ){
FOR(i,vl) acyc[cyc][i] = a[i];
}else{
FOR(i,vl) acyc[cyc][i] = bD[i];
if( cyc == b_period ){ // change acyc[0] to a delta value too...
FOR(i,vl) acyc[0][i] = acyc[0][i] - a[i];
}
}
++cnt_bA_bD; ++cnt_jj_M;
assert( have_bA_bD ); assert( have_jj_M );
}
}
}
#endif
//cout<<" dbg: "<<strategy<<" sugg "<<ret.suggested<<" unroll "<<ret.unroll<<endl;
if(maxun>0 && ret.unroll==0){
cout<<"TODO: set u.unroll to something nice [maxun="<<maxun<<"]"<<endl;
}
assert(ret.suggested != UNR_UNSET);
return ret;
}
/** u modified to set u.vll \em and return corresponding UnrollSuggest for the alt vl. */
UnrollSuggest unroll_suggest( UnrollSuggest& u, int vl_min/*=0*/, int const v/*=0,verbosity*/ ){
if( u.suggested != UNR_UNSET ){
cout<<" Looking for an alt strategy..."<<endl;
}
double const f=(224./256.); //0.90
int const vl = u.vl;
uint64_t const iijj = u.ii * u.jj;
uint64_t const nloop0 = (iijj+u.vl-1) / u.vl; // div_round_up(iijj,vl)
int const vl_equ_min = ve_vlen_suggest_equ(u.ii*u.jj); // "same" nloops, balanced vlen
int const vl_max = max(1,(u.suggested==UNR_UNSET? vl: vl-1));
// if vl_min is unspecified [out-of-range] set it via some HEURISTIC
if( vl_min < 1 || vl_min > vl ){ // vl_min default (or out-of-range)?
if(vl==MVL){
// equitable work limit, tailored for VE:
//vl_min = vl_equ_min;
// if ii*jj is large, above range is too small, if we consider that
// unroll Alt saving is accrued each time through loop.
// So let's allow up to 5% more loops.
// Later we'll use a better model to weed out duds [OpSave estimator]
uint64_t const nloop = (105*nloop0+99)/100;
uint64_t const vleq = (iijj+nloop-1) / nloop;
vl_min = vleq; // with only "just a little more" loops allowed
}else{ // original "fraction" behaviour
//for general testing purposes (arbitrary vl)
vl_min = max( 1, (int)(f*vl) );
// above could be different -- Ex. vl_min implying same # nloops
}
}
// u.b_period_max -ve prevents all loop unrolling, so ignore u.unroll
int const unroll = (u.b_period_max>0? u.unroll: 0);
//
// OpSave estimator
//
// Compare {N,I,K} nloops, induction-ops, kernel-ops
// with {N',I',K'} uAlt suggestion.
//
// OpSaving = Ops' - Ops
// = N'*I'-N'*K - N*I+N*K
// = N'*I' - N*I - (N'-N)*K
// Typical uAlt saving is I~4 to I'~1
// and suppose kernel K is 10 ops...
int const Kops=10; // Suppose kernel is 10 ops XXX
//... hmm Iops actually depends on precalc/unroll support too
// Ex. precalc outside of outer loops can have ret/nloop ~ zero.
auto Iops = [](enum Unroll const sugg){
int ret = (sugg==UNR_DIVMOD? 4
:sugg==UNR_JJPOW2_NLOOP || sugg==UNR_JJPOW2_NLOOP || sugg==UNR_JJPOW2_BIG? 2
:sugg==UNR_JJMODVL_NORESET || sugg==UNR_JJMODVL_RESET? 1
:sugg==UNR_VLMODJJ? 1
:sugg==UNR_NLOOP1? 2
:sugg==UNR_UNSET? 999999 // <-- always-worst
:2);
return ret;
};
//auto OpEst = [&Kops,&Iops,&iijj,&unroll](enum Unroll const sugg, int const vl)
auto OpEst = [&Iops,&iijj,&unroll](enum Unroll const sugg, int const vl)
{
int const iops = Iops(sugg); // induction ops
int const nl = (iijj+vl-1)/vl; // num loops
double ops = nl*iops + nl*Kops; // induction + kernel ops
bool const vl_changes = iijj%vl; // 1 unroll might have extra
if(vl_changes) ops += nl*(unroll<=1? 3.0: 3.0/unroll); // ~ 3 scalar ops
// XXX when unroll>1, OpEst should also favor nPart==0 (a tiny bit)
ops = (int)(ops*100.0)*0.01;
return ops;
};
//double const opsOrig = nloop0 * Iops(u.suggested) + nloop0*Kops;
double const opsOrig = OpEst(u.suggested,vl);
auto OpSave = [&OpEst,&opsOrig](enum Unroll const sugg, int const vll){
double ops = OpEst(sugg, vll);
double const ret = opsOrig - ops; // +ve is GOOD, vll saves operations
return ret;
};
if(v>0)cout<<" checking [ "<<vl_max<<" to "<<vl_min<<" ] ... "
<<" nloops orig "<<(iijj+vl-1)/vl<<", @vl_max:"<<(iijj+vl_max-1)/vl_max
<<", @vl_min:"<<(iijj+vl_min-1)/vl_min
<<" OpSave kernel ops="<<Kops<<" unroll="<<unroll<<endl;
//
auto const sugg = u.suggested; // induction strategy
bool const jj_pow2 = positivePow2(u.jj);
if( sugg != UNR_NLOOP1 && sugg!=UNR_VLMODJJ && sugg!=UNR_JJMODVL_NORESET
&& sugg!=UNR_JJMODVL_RESET && !jj_pow2 ){
// quick check for very easy cases (just print msg)
// PURELY INFORMATIVE: always print, even for a vll < vl_min
int const jj = u.jj;
if( jj < vl ){
int const vll = vl/jj*jj;
if(v>0)cout<<" Note: vl/jj*jj = "<<vll<<" is an exact multiple of jj"
" (vl reduced by "<<(vl-vll)<<" or "<<int((vl-vll)*1000.0/vl)*0.1<<"%)"
<<"\n with nloops' = "<<(u.ii*u.jj+vll-1)/vll
<<endl;
}else if( jj > vl && jj%vl!=0){
// can we make jj an exact mult of vll?
int const nup = (jj+vl-1)/vl;
if( jj%nup == 0 ){
int const vll = jj/nup;
if(v>0)cout<<" Note: vl = "<<jj/nup<<" would make jj an exact mult of vl"
" (vl reduced by "<<(vl-vll)<<" or "<<int((vl-vll)*1000.0/vl)*0.1<<"%)"
<<"\n with nloops' = "<<(u.ii*u.jj+vll-1)/vll
<<endl;
}
}
}
// "Efficient" list:
// UNR_NLOOP1 UNR_VLMODJJ
// UNR_JJMODVL_NORESET UNR_JJMODVL_RESET
// UNR_JJPOW2_{NLOOP,CYC,BIG}
// UNR_CYC (and maybe UNR_NLOOP)
// leaving "inefficient" as:
// UNR_DIVMOD (and maybe UNR_NLOOP)
//
// If u.vl is already "efficient", still try for a decent low-vl alternate
UnrollSuggest ret = UnrollSuggest(); // If no good alt, ret is 'empty'
u.vll = 0; // and u.vll is zero
#if 0
if( u.suggested == UNR_JJMODVL_NORESET )
cout<<" ---> UNR_DIVMOD_NORESET trivial, no better alt"<<endl;
else if( u.suggested == UNR_NLOOP1 )
cout<<" ---> NLOOP1 has no better alt"<<endl;
else if( u.suggested == UNR_VLMODJJ )
cout<<" ---> UNR_VLMODJJ trivial, no better alt"<<endl;
else
#else
if(1){
#endif
if(v>0)cout<<"Checking vll ... orig alg "<<name(u.suggested)<<" nloops "<<(iijj+vl-1)/vl
<<" orig ops~"<<opsOrig<<endl;
int best_vll=0;
int best_opsave=0;
UnrollSuggest best_u;
for( int vll = vl_max; vll >= vl_min; --vll){
if(v>0){cout<<" "<<vll; cout.flush();}
UnrollSuggest us = unroll_suggest(vll, u.ii, u.jj, u.b_period_max, 0/*verbose*/);
int opsave = OpSave(us.suggested, vll);
if(v>0)cout<<" ("<<int(vll*1000./vl)*0.1<<"%) ---> alg "<<name(us.suggested)
<<" nloops "<<(iijj+vll-1)/vll<<" [save "<<opsave<<"] ";
if( us.suggested==UNR_DIVMOD && u.suggested!=UNR_UNSET && u.suggested!=UNR_DIVMOD ){
// this is the worst, so it cannot be an improvement (and might even have nloop higher)
//cout<<" skipped: UNR_DIVMOD "<<endl;
//continue;
// BUT [new] it might lower vlen without nloop increase?
if(v>0)cout<<" bad-orig";
}
if( u.suggested == UNR_JJMODVL_NORESET
|| u.suggested == UNR_NLOOP1
|| u.suggested == UNR_VLMODJJ){
//cout<<" ---> trivial orig "<<name(u.suggested)<<", no better alt"<<endl;
//continue;
if(v>0)cout<<" trivial-orig";
}
if(1){
// Is this alt any different?
//if(us.suggested == u.suggested && us.unroll>=u.unroll){ // it can't be much better
// // Sometimes this can pick up iijj%vl==0 case! so NOT a good guess
// cout<<" ---> skipped because it's too similar to original"
// <<" [save "<<opsave<<"]"<<endl;
// continue;
//}
if(us.suggested == u.suggested && opsave>=0 && iijj%vll==0){
if(v>0)cout<<" ACCEPTED! iijj%vll==0"<<endl;
if(opsave >= best_opsave){ best_opsave = opsave; best_vll = vll; best_u=us; }
continue;
}
if(u.suggested==UNR_JJMODVL_RESET /*other JJMODVL trivial, never here*/
&& (us.suggested==UNR_JJPOW2_NLOOP || us.suggested==UNR_JJPOW2_BIG)){
if(v>0)cout<<" ---> JJPOW2 without precalc (4 vec ops) never beats JJMODVL"
<<" [save "<<opsave<<"]"<<endl;
continue;
}
//
// If unrolling for real, with precalculated constants,
// UNR_NLOOP should always "equalize' the VLs using 'nice_vector_length(iijj)'.
//
// If NOT unrolling the loop, then the recalculation is quite a bit faster
// for UNR_VLMODJJ.
//
// Here we adopt UNR_VLMODJJ even if it adds more loops, because the loop update is trivial
//
if(us.suggested == UNR_JJPOW2_BIG
|| u.suggested== UNR_DIVMOD
|| (us.suggested==UNR_VLMODJJ /*&& u.nloop == us.nloop*/) // trivial induction!
|| (us.suggested==UNR_JJMODVL_NORESET /*&& u.nloop == us.nloop*/) // trivial!
){
if(v>0)cout<<" alg "<<name(us.suggested)<<" nicer";
//ret = us; // return the nice alt
//u.vll = vll; // also record existence-of-alt into u
//break;
if(opsave<=0) {
if(v>0)cout<<" but higher ops."<<endl;
continue;
}
}
// NEW: base acceptance on opsave (which assumes no unrolling/precalc)
if(opsave>=0){
if(v>0)cout<<" ACCEPTED! (might save ops)"<<endl;
//ret = us; // return the nice alt
//u.vll = vll; // also record existence-of-alt into u
//break;
if(opsave >= best_opsave){ best_opsave = opsave; best_vll = vll; best_u=us; }
continue;
}
if(v>0)cout<<endl;
}
}
if(best_vll > 0){
u.vll = best_vll;
ret = best_u;
if(v>0)cout<<"Best [/lowest equiv] vl "<<u.vl<<" --> "<<u.vll<<" [saved "<<best_opsave<<"]";
//UnrollSuggest us = unroll_suggest(u.vll, u.ii, u.jj, u.b_period_max, 0/*verbose*/);
}
}
// if u.vll is still unset, set it to min-VL-for-same-nloops ("equitable" vl_equ)
if(vl==MVL && u.vll==0 && vl_equ_min<=vl_max){
// opsave==0 picks up many of these cases via best_vll,
// but we still might catch some 'auto-skipped' cases, I think.
int const vl_equ = ve_vlen_suggest((int64_t)u.ii*u.jj);
if(vl_equ<=vl_max) u.vll = vl_equ; // VE latency-adjusted work balance
else if(vl_equ_min<=vl_max) u.vll = vl_equ_min; // else work balance only (not mult of 32)
if(u.vll != 0){
if(v>0)cout<<" vl="<<u.vll<<" ACCEPTED! (for load balance, not unroll)";
// This is something like vl_equ round up to mult of 32
UnrollSuggest us = unroll_suggest(u.vll, u.ii, u.jj, u.b_period_max, 0/*verbose*/);
ret = us; // similar alg, but slightly better load balance (~vector latencies)
// this might actually be bad, if you want very low latency last time through!
}
}
if(v>0)cout<<endl;
return ret;
}
/** Generate reference vectors of vectorized 2-loop indices */
std::vector<Vab> ref_vloop2(Lpi const vlen, Lpi const ii, Lpi const jj,
int const verbose/*=1*/ )
{
std::vector<Vab> vabs; // fully unrolled set of reference pairs of a,b vector register
VecHash2 vhash(vlen);
VVlpi a(vlen), b(vlen);
int v=0; // 0..vlen counter
for(int64_t i=0; i<(int64_t)ii; ++i){
for(int64_t j=0; j<(int64_t)jj; ++j){
//cout<<"."; cout.flush();
a[v] = i; b[v] = j;
if( ++v >= vlen ){
vabs.emplace_back( a, b, v );
vhash.hash_combine( a.data(), b.data(), vlen );
vabs.back().hash = vhash.u64();
v = 0;
}
}
}
cout<<vabs.size()<<" full loops of "<<vlen<<" with "<<v<<" left over"<<endl;
if( v > 0 ){ // partial final vector
for(int i=v; i<vlen; ++i) { a[i] = b[i] = 0; }
vabs.emplace_back( a, b, v );
vhash.hash_combine( a.data(), b.data(), v );
vabs.back().hash = vhash.u64();
}
if(verbose>0){ // print ref result
// pretty-printing via vecprt
int const n=8; // output up-to-n [ ... [up-to-n]] ints
int const bignum = std::max( ii, jj );
int const wide = 1 + (bignum<10? 1: bignum <100? 2: bignum<1000? 3: 4);
for(size_t l=0; l<vabs.size(); ++l){
auto const& a = vabs[l].a;
auto const& b = vabs[l].b;
auto const& vl = vabs[l].vl;
cout<<"__"<<l<<endl;
cout<<"a_"<<l<<"["<<vl<<"]="<<vecprt(n,wide,a,vl)<<endl;
cout<<"b_"<<l<<"["<<vl<<"]="<<vecprt(n,wide,b,vl)<<" hash"<<vabs[l].hash<<endl;
}
}
return vabs;
}
/** \fn unroll_suggest
*
* What about vector barrel rotate (Aurora VMV instruction)...
*
* Idea:
*
* for some jj, esp if vl+jj<256
* the bM,bD divmod operation might be OPTIMIZED to rot
* if you are willing to modify vlen or have extended-length
* rotation. NB: this is rotation across vector indices.
* Here I consider register-only implementations.
*
* Conclusion:
*
* - Works nicely if we have a double-vector rotate (we don't)
* or a rotate mod other values than MVL=256.
* Aurora doesn't, and the useful rotation cases
* already have a low op-count update.
*
* - A fast long-vector rotation can be simulating by calculating a
* cyclic start index and doing a single \b memory load.
* - This depends on existence of non-trivial cases... we show one below
* - i' = i+shift; if(i'>period) i'-=period // add, conditional subtract
* - b' = read vector from data[i'] // memory load
* - and then modulo (mul,sub) and a' (add)
* - which is \em likely about the \em same speed as the divmod_uB
* - cf. worst case 'i' with 6 ops, no conditionals, no mem access
*
*
* Analysis: What is the complexity of simulating the rotation?
*
* Ex. ```./fuse2 -t 256 1000 25; ./fuse2 -t 256,200,50;```
* suggests
* ```
* I.vl,ii,jj=256,1000,25 nloop=98, b_period=25 both high: full unroll(nloop=98) [no precalc] still possible
* I.vl,ii,jj=256,200,50 nloop=40, b_period=25 both high: full unroll(nloop=40) [no precalc] still possible
* ```
* but we could unroll by any small amount as follows:
*
* - store b[256+25] as (Vz[25],Vy[256]), so current b[vl] is stored in Vy register.
* - b[] may update like [0 1 2...] // a cyclic sequence, mod jj
* --> [6 7 8...]
* --> [12 13 14...]
* - this is like a long-rotate-right by 6 vector indices, of a 256+25-long (Vz,Vy) "vector" register
* - Aurora vector rotate is "Vector Move", VMV
* - Vx[i=0..vl] = Vz(mod((unsigned)(Sy+1),MVL)))
* - no rotate across two vector registers
* - Could simulate long-register VMV:
* - rsh = 19 // const index shift
* - SyL = 6 = b_period - Sy // const up-shift for b'[i] = b[i-SyL]
* - VsqR = [ ?..? 0,1,2,...b_period-1 ] // const vector
* - //
* - Sy = rsh [19] // initial Sy
* - SyR = MVL - b_period + Sy // initial shift for VsqR --> b'[0] = VsqR[SyR]
* - VMy = VM [ 1,1,..1 (19x) 0..0 ]
* - VM~y = VM [ 0..0 (19x) 1..1 ]
* - b[i] = fastmod(vsq[], b_period) // initial b[i]
* - // Induction inputs: SyR, b[vl]
* - b = [ b0 b1 ... b_vl ] // input; precond vl > Sy
* - // Induction:
* - Sy=Sy+SyL // Sy subsequent updates
* - VMV b', b, Sy, vl-b_period+rsh // b' = [ ?bogus? (19x) b0 b1 ... b_{vl-Sy} ]
* - SyR += SyL; if( SyR > MVL ) SyR -= b_period; // SyR subsequent updates
* - VMV first, SyL, Sy // shift in correct values for ?bogus? region
* - VMRG b, b', first, VMy // next value of b[]
* - But this is already has more instruction count than the full recalc
*
* - if jj is not a multiple of vl (or other way), then we do not have equally
* sampled values 0..jj in the b[] vector, so no single-vector Aurora VMV suffices.
* - You can \b only do rotate method easily if \f$Vcyc = (vl/b_period)*b_period + b_period\f$
* can EXACTLY equal 256 in a SINGLE Aurora VMV, though.
* - but this happens for vl > jj only for jj already a power of two [already fast]
* - and implies jj is a power of two,
* - so we already have a fast update : vl%jj==0 or otherwise
*
* Conclusion: Aurora does not allow a fast vlen ~ MVL rotation method
*
*/
}//loop::
// vim: ts=4 sw=4 et cindent cino=^=l0,\:.5s,=-.5s,N-s,g.5s,b1 cinkeys=0{,0},0),\:,0#,!^F,o,O,e,0=break