From d3c220c82b67cedb274d7197886f48675db0b90d Mon Sep 17 00:00:00 2001 From: Philipenko Vladimir Date: Wed, 5 Jun 2024 17:29:48 +0300 Subject: [PATCH 1/2] Forgot to pass `num_threads` --- imops/morphology.py | 9 ++++++--- 1 file changed, 6 insertions(+), 3 deletions(-) diff --git a/imops/morphology.py b/imops/morphology.py index bd087847..59e6ac3e 100644 --- a/imops/morphology.py +++ b/imops/morphology.py @@ -484,8 +484,8 @@ def distance_transform_edt( if (not return_distances) and (not return_indices): raise RuntimeError('At least one of `return_distances`/`return_indices` must be True') - - input = np.atleast_1d(np.where(input, 1, 0).astype(np.int8)) + if input.dtype != bool: + input = np.atleast_1d(np.where(input, 1, 0)) if sampling is not None: sampling = _ni_support._normalize_sequence(sampling, input.ndim) sampling = np.asarray(sampling, dtype=np.float64) @@ -497,7 +497,10 @@ def distance_transform_edt( euclidean_feature_transform(input, sampling, ft) if return_distances: - dt = edt(input, anisotropy=sampling.astype(np.float32)) if sampling is not None else edt(input) + if sampling is not None: + dt = edt(input, anisotropy=sampling.astype(np.float32), parallel=num_threads) + else: + dt = edt(input, parallel=num_threads) result = [] if return_distances: From 162eb6661e4c8c140f0ff3bba2df613aa35858fb Mon Sep 17 00:00:00 2001 From: Philipenko Vladimir Date: Wed, 5 Jun 2024 17:57:10 +0300 Subject: [PATCH 2/2] Use `image` instead of `input` --- imops/morphology.py | 28 ++++++++++++++-------------- imops/zoom.py | 24 ++++++++++++------------ 2 files changed, 26 insertions(+), 26 deletions(-) diff --git a/imops/morphology.py b/imops/morphology.py index 59e6ac3e..9085976e 100644 --- a/imops/morphology.py +++ b/imops/morphology.py @@ -366,7 +366,7 @@ def binary_opening( def distance_transform_edt( - input: np.ndarray, + image: np.ndarray, sampling: Tuple[float] = None, return_distances: bool = True, return_indices: bool = False, @@ -376,7 +376,7 @@ def distance_transform_edt( """ Fast parallelizable Euclidean distance transform for <= 3D inputs - This function calculates the distance transform of the `input`, by + This function calculates the distance transform of the `image`, by replacing each foreground (non-zero) element, with its shortest distance to the background (any zero-valued element). @@ -386,10 +386,10 @@ def distance_transform_edt( Parameters ---------- - input : array_like + image : array_like input data to transform. Can be any type but will be converted into binary: 1 wherever input equates to True, 0 elsewhere - sampling : tuple of `input.ndim` floats, optional + sampling : tuple of `image.ndim` floats, optional spacing of elements along each dimension. If a sequence, must be of length equal to the input rank; if a single number, this is used for all axes. If not specified, a grid spacing of unity is implied @@ -476,31 +476,31 @@ def distance_transform_edt( num_threads = normalize_num_threads(num_threads, backend, warn_stacklevel=3) if backend.name == 'Scipy': - return scipy_distance_transform_edt(input, sampling, return_distances, return_indices) + return scipy_distance_transform_edt(image, sampling, return_distances, return_indices) - if input.ndim > 3: + if image.ndim > 3: warn("Fast Euclidean Distance Transform is only supported for ndim<=3. Falling back to scipy's implementation.") - return scipy_distance_transform_edt(input, sampling, return_distances, return_indices) + return scipy_distance_transform_edt(image, sampling, return_distances, return_indices) if (not return_distances) and (not return_indices): raise RuntimeError('At least one of `return_distances`/`return_indices` must be True') - if input.dtype != bool: - input = np.atleast_1d(np.where(input, 1, 0)) + if image.dtype != bool: + image = np.atleast_1d(np.where(image, 1, 0)) if sampling is not None: - sampling = _ni_support._normalize_sequence(sampling, input.ndim) + sampling = _ni_support._normalize_sequence(sampling, image.ndim) sampling = np.asarray(sampling, dtype=np.float64) if not sampling.flags.contiguous: sampling = sampling.copy() if return_indices: - ft = np.zeros((input.ndim,) + input.shape, dtype=np.int32) - euclidean_feature_transform(input, sampling, ft) + ft = np.zeros((image.ndim,) + image.shape, dtype=np.int32) + euclidean_feature_transform(image, sampling, ft) if return_distances: if sampling is not None: - dt = edt(input, anisotropy=sampling.astype(np.float32), parallel=num_threads) + dt = edt(image, anisotropy=sampling.astype(np.float32), parallel=num_threads) else: - dt = edt(input, parallel=num_threads) + dt = edt(image, parallel=num_threads) result = [] if return_distances: diff --git a/imops/zoom.py b/imops/zoom.py index 6d1868ff..110258f6 100644 --- a/imops/zoom.py +++ b/imops/zoom.py @@ -185,7 +185,7 @@ def zoom_to_shape( def _zoom( - input: np.ndarray, + image: np.ndarray, zoom: Sequence[float], output: np.ndarray = None, order: int = 1, @@ -212,15 +212,15 @@ def _zoom( if backend.name not in ('Scipy', 'Numba', 'Cython'): raise ValueError(f'Unsupported backend "{backend.name}".') - ndim = input.ndim - dtype = input.dtype + ndim = image.ndim + dtype = image.dtype cval = np.dtype(dtype).type(cval) - zoom = fill_by_indices(np.ones(input.ndim, 'float64'), zoom, range(input.ndim)) + zoom = fill_by_indices(np.ones(image.ndim, 'float64'), zoom, range(image.ndim)) num_threads = normalize_num_threads(num_threads, backend, warn_stacklevel=4) if backend.name == 'Scipy': return scipy_zoom( - input, zoom, output=output, order=order, mode=mode, cval=cval, prefilter=prefilter, grid_mode=grid_mode + image, zoom, output=output, order=order, mode=mode, cval=cval, prefilter=prefilter, grid_mode=grid_mode ) if ( @@ -242,7 +242,7 @@ def _zoom( stacklevel=3, ) return scipy_zoom( - input, zoom, output=output, order=order, mode=mode, cval=cval, prefilter=prefilter, grid_mode=grid_mode + image, zoom, output=output, order=order, mode=mode, cval=cval, prefilter=prefilter, grid_mode=grid_mode ) if backend.name == 'Cython': @@ -260,28 +260,28 @@ def _zoom( n_dummy = 3 - ndim if ndim <= 3 else 0 if n_dummy: - input = input[(None,) * n_dummy] + image = image[(None,) * n_dummy] zoom = [*(1,) * n_dummy, *zoom] zoom = np.array(zoom, dtype=np.float64) - is_contiguous = input.data.c_contiguous + is_contiguous = image.data.c_contiguous c_contiguous_permutaion = None args = () if backend.name in ('Numba',) else (num_threads,) if not is_contiguous: - c_contiguous_permutaion = get_c_contiguous_permutaion(input) + c_contiguous_permutaion = get_c_contiguous_permutaion(image) if c_contiguous_permutaion is not None: out = src_zoom( - np.transpose(input, c_contiguous_permutaion), + np.transpose(image, c_contiguous_permutaion), zoom[c_contiguous_permutaion], cval, *args, ) else: warn("Input array can't be represented as C-contiguous, performance can drop a lot.", stacklevel=3) - out = src_zoom(input, zoom, cval, *args) + out = src_zoom(image, zoom, cval, *args) else: - out = src_zoom(input, zoom, cval, *args) + out = src_zoom(image, zoom, cval, *args) if c_contiguous_permutaion is not None: out = np.transpose(out, inverse_permutation(c_contiguous_permutaion))