APMOLPRO is an interface between the APMO (Any Particle Molecular Orbital) code and the electronic structure package MOLPRO [https://www.molpro.net/]. The any particle molecular orbital APMO code [González et al., Int. J. Quantum Chem. 108, 1742 (2008)] implements the model where electrons and light nuclei are treated simultaneously at Hartree-Fock or second-order Möller-Plesset levels of theory. The APMO -MOLPRO interface allows to include high- level electronic correlation as implemented in the MOLPRO package and to describe nuclear quantum effects at Hartree-Fock level of theory with the APMO code.
The examples given in the paper [Aguirre et al. J. Chem. Phys. 138, 184113 (2013)] illustrate the use of this implementation on different model systems: 4 He2 dimer as a protype of a weakly bound van der Waals system; isotopomers of [He–H–He]+ molecule as an example of a hydrogen bonded system; and molecular hydrogen to compare with very accurate non-Born-Oppenheimer calculations.
- Nestor F. Aguirre ( [email protected] )
- Edwin F. Posada ( [email protected] )
- Andres Reyes ( [email protected] )
- Alexander O. Mitrushchenkov ( [email protected] )
- Maria P. de Lara-Castells ( [email protected] )
To cite the code, please proceed as follows:
In this example, a basis aug-cc-pVQZ is chosen for the electrons of the hydrogen atoms and a 5sp even-tempered for the hydrogen nuclei.
basis={
set ORBITAL
H=aug-cc-pVQZ
set NUCBASIS
s,H,even,nprim=2,ratio=2.5,centre=33.7,dratio=0.8
p,H,even,nprim=2,ratio=2.5,centre=33.7,dratio=0.8
default ORBITAL
}
cartesian
This example corresponds to the calculation of the molecule [HeHHe]+ where helium nuclei and the hydrogen nucleus are represented as quantum particles with an even-tempered basis set and a single 1s function respectively. CCSD(T)/aug-cc-pVQZ level of theory is used for the electronic part.
include apmolpro.com
APMOLPRO_maxit = 30
APMOLPRO_tol = 1e-6
APMOLPRO_hforb = 2100.2
APMOLPRO_dm = 21400.2
! First call to APMO to build the nuclear wave function
APMOLPRO_begin={
{apmo
species H_1,He_4,He_4
nucbasis nucbasis,dirac,dirac
save I,ICOUP
save J,JCOUP
save K,KIN
}
}
! Updating the nuclear energy including the kinetic energy from the nuclei
APMOLPRO_enuc={
{apmo
update enuc H_1
}
}
! Lets to relax the nuclei keeping frozen the electrons
APMOLPRO_nrelax={
{apmo
load den EDEN
frozen e-
species H_1,He_4,He_4
nucbasis nucbasis,dirac,dirac
}
}
! Electronic method to use
APMOLPRO_eMethod={
ccsd(t)
}
! Nuclear-electron interaction method through the
! first-order reduced density matrix (record=21400.2)
APMOLPRO_cMethod={
{ccsd
core 0
expec relax,dm
expec dm
dm $APMOLPRO_dm
natorb $APMOLPRO_dm
}
}
basis={
set ORBITAL
H=aug-cc-pVQZ
He=aug-cc-pVQZ
set NUCBASIS
s,H,even,nprim=5,ratio=2.5,centre=33.7,dratio=0.8
p,H,even,nprim=5,ratio=2.5,centre=33.7,dratio=0.8
d,H,even,nprim=5,ratio=2.5,centre=33.7,dratio=0.8
s, He, 30.0
c, 1.1, 1.000000
default ORBITAL
}
cartesian
r = 0.92491089
set charge=1
symmetry nosym
angstrom
geometry={
H
He 1 r
He 1 r 2 180.0
}
{optg procedure=apmolpro
}
{property
density $APMOLPRO_dm-10.0
orbital $APMOLPRO_dm-10.0
dm
qm
}
{put molden HeTHeorb.molden
orb $APMOLPRO_dm-10.0
}
Contour plots of the nuclear density for the different isotopic substitutions of the central hydrogen atom in the system [HeHHe]+.
This example shows how to optimize variationally the exponent 1s of the Helium atoms in the He2 diatomic molecule by using the simplex method (geometry optimization included).
c1s = 200.0
basis={
set ORBITAL
He=aug-cc-pVTZ
set NUCBASIS
s He c1s
c 1.1 1.00000
default ORBITAL
}
cartesian
r = 2.99773304
symmetry nosym
angstrom
geometry={
He
He 1 r
}
optBasis={
{optg procedure=apmolpro gradient=1e-5
}
}
{minimize energy c1s
method energy simplex,varscale=2,thresh=1e-6,proc=optBasis
}
Results of the nuclear basis set optimization (even-tempered) at CCSD(T){CCSD}:HF level of theory for the [HeHHe]+ molecule.