-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathLinearDecayCorrelationFunction.cpp
238 lines (200 loc) · 7.14 KB
/
LinearDecayCorrelationFunction.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
//#############################################################################
//
// FILENAME: LinearDecayCorrelationFunction.cpp
//
// CLASSIFICATION: Unclassified
//
// DESCRIPTION:
//
// This class is used to compute the correlation between model
// parameters in a community sensor model (CSM).
//
// LIMITATIONS: None
//
//
// SOFTWARE HISTORY:
// Date Author Comment
// ----------- ------ -------
// 01-Dec-2021 JPK Adapted from LinearDecayCorrelationModel
// 28-Sep-2022 JPK Updated valid parameter values.Added check
// against "deltaTimeEpsilon"
// 12-Nov-2023 JPK More updates to simplify acessibility of
// parameters.
// 21-Nov-2023 JPK Added correlationCoefficientFor() static method.
// 22-Nov-2023 JPK Added checkParameters() static method.
//
// NOTES:
// Refer to LinearDecayCorrelationFunction.h for more information.
//#############################################################################
#define CSM_LIBRARY
#include "LinearDecayCorrelationFunction.h"
#include "Error.h"
#include <cmath>
#include <sstream>
namespace csm {
static const std::string LDCF_NAME = "LinearDecay";
LinearDecayCorrelationFunction::LinearDecayCorrelationFunction()
:
SPDCorrelationFunction (LDCF_NAME,0.0),
theSegmentRho (1,0.0),
theSegmentTime (1,1000.0),
theStrictlyDecreasingFlag (true)
{}
LinearDecayCorrelationFunction::
LinearDecayCorrelationFunction(const std::vector<double>& initialCorrsPerSegment,
const std::vector<double>& timesPerSegment,
bool strictlyDecreasing,
double deltaTimeEpsilon)
:
SPDCorrelationFunction (LDCF_NAME,deltaTimeEpsilon),
theSegmentRho (initialCorrsPerSegment),
theSegmentTime (timesPerSegment),
theStrictlyDecreasingFlag (strictlyDecreasing)
{
checkParameters(theSegmentRho,theSegmentTime,theStrictlyDecreasingFlag);
}
LinearDecayCorrelationFunction::~LinearDecayCorrelationFunction()
{}
double
LinearDecayCorrelationFunction::getCorrelationCoefficient(double deltaTime) const
{
const double dtEpsilon = deltaTimeEpsilon();
return correlationCoefficientFor(deltaTime,
theSegmentRho,
theSegmentTime,
dtEpsilon);
}
std::vector<SPDCorrelationFunction::Parameter>
LinearDecayCorrelationFunction::parameters() const
{
std::vector<SPDCorrelationFunction::Parameter> paramVec;
const size_t NUM_SEG = theSegmentRho.size();
if (NUM_SEG > 0)
{
paramVec.reserve(2*NUM_SEG);
static const std::string RHO_NAME = "Rho_";
static const std::string TIME_NAME = "Time_";
for (size_t seg = 0; seg < NUM_SEG; ++seg)
{
std::stringstream rhoStrm;
rhoStrm << RHO_NAME << seg;
std::stringstream timeStrm;
timeStrm << TIME_NAME << seg;
paramVec.push_back(std::make_pair(rhoStrm.str(),theSegmentRho[seg]));
paramVec.push_back(std::make_pair(timeStrm.str(),theSegmentTime[seg]));
}
}
return paramVec;
}
void LinearDecayCorrelationFunction::
checkParameters(const std::vector<double>& initialCorrsPerSegment,
const std::vector<double>& timesPerSegment,
bool strictlyDecreasing)
{
static const char* const METHOD_NAME =
"LinearDecayCorrelationFunction::checkAndSetParameters";
const size_t NUM_CORR = initialCorrsPerSegment.size();
const size_t NUM_TIME = timesPerSegment.size();
if (NUM_CORR != NUM_TIME)
{
std::stringstream errStrm;
errStrm << "Number of correlations : "
<< NUM_CORR
<< " is not equal to number of times : "
<< NUM_TIME;
throw Error(
Error::BOUNDS,
errStrm.str(),
METHOD_NAME);
}
// No parameters implies a correlation coefficient of 0.0 and is a
// valid case.
if (NUM_CORR > 0)
{
double corr, prevCorr;
double time, prevTime;
for(size_t idx = 0; idx < NUM_CORR; ++idx)
{
corr = initialCorrsPerSegment[idx];
time = timesPerSegment[idx];
if (corr < 0.0 || corr > 1.0)
{
throw Error(
Error::BOUNDS,
"Correlation must be in range [0..1].",
METHOD_NAME);
}
if (idx > 0)
{
const size_t prevIdx = idx - 1;
prevCorr = initialCorrsPerSegment[prevIdx];
prevTime = timesPerSegment[prevIdx];
if (corr > prevCorr)
{
throw Error(
Error::BOUNDS,
"Correlation must not be increasing with time.",
METHOD_NAME);
}
if (strictlyDecreasing && (corr == prevCorr))
{
throw Error(
Error::BOUNDS,
"Correlation must be monotonically decreasing with time.",
METHOD_NAME);
}
if (time <= prevTime)
{
throw Error(
Error::BOUNDS,
"Time must be monotomically increasing.",
METHOD_NAME);
}
}
}
}
}
double LinearDecayCorrelationFunction::
correlationCoefficientFor(double deltaTime,
const std::vector<double>& initialCorrsPerSegment,
const std::vector<double>& timesPerSegment,
double dtEpsilon)
{
if (deltaTime != 0.0)
{
const double adt = std::fabs(deltaTime);
if (adt >= dtEpsilon)
{
const size_t NUM_C = initialCorrsPerSegment.size();
if (NUM_C == 0) return 0.0;
double prevCorr = initialCorrsPerSegment[0];
double prevTime = timesPerSegment[0];
double corrCoeff = prevCorr;
for(size_t idx = 1; idx < NUM_C; ++idx)
{
const double corr = initialCorrsPerSegment[idx];
const double time = timesPerSegment[idx];
if (adt <= time)
{
if (time - prevTime != 0.0)
{
corrCoeff = prevCorr +
(adt - prevTime) /
(time - prevTime) * (corr - prevCorr);
}
break;
}
prevCorr = corr;
prevTime = time;
corrCoeff = prevCorr;
}
// if necessary, clamp the coefficient value to the acceptable range
return clampedCoeff(corrCoeff,false);
}
}
//***
// if delta time is bounded by epsilon, correlation coefficient is 1.0
//***
return 1.0;
}
} // namespace csm