-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtst-iss-rate-fig.py
129 lines (106 loc) · 4.53 KB
/
tst-iss-rate-fig.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import numpy as np
import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt
import matplotlib.colors as Color
import InterruptionAnalysis as ia
data = pd.read_csv('./data/timeseries.csv', index_col = 0)
numericcols = ['begin', 'end', 'dur', 'lat']
data[numericcols] /= 1000 # cannot be done in seconds
votedata = pd.read_csv('./data/vote-data.csv')
stdata = pd.read_csv('./data/speakingTime-data.csv', index_col = 0)
a = 0.99
gIDs = pd.unique(data['gID'])
inets = {gID: nx.read_gml(f'./data/networks-iss/{gID}.gml') for gID in gIDs}
bnets = {gID: nx.read_gml(f'./data/networks-both/{gID}.gml') for gID in gIDs}
# for ease of .loc use:
for df in [votedata, stdata]:
df.set_index('pID', inplace = True)
tst_dfs = []
iss_dfs = []
nss_dfs = []
for gID in gIDs:
dat = data[data['gID'] == gID]
pIDs = pd.unique(dat['pID'])
iss = ia.interruptive_simultaneous_speech(data, pIDs)
sorter = iss.groupby(['i', 'begin'])['dur'].count()
sorter = list(sorter[sorter > 1].index)
for row in sorter:
temp = iss[(iss['i'] == row[0]) & (iss['begin'] == row[1])]
drop = temp[temp['dur'] != max(temp['dur'])]
iss.drop(list(drop.index), inplace = True)
nss = ia.non_interruptive_simultaneous_speech(data, pIDs)
sorter = nss.groupby(['j', 'begin'])['dur'].count()
sorter = list(sorter[sorter > 1].index)
for row in sorter:
temp = nss[(nss['j'] == row[0]) & (nss['begin'] == row[1])]
drop = temp[temp['dur'] != max(temp['dur'])]
nss.drop(list(drop.index), inplace = True)
tsts = pd.DataFrame({'tst_sum': dat.groupby('pID')['dur'].sum(),
'tst_count': dat.groupby('pID')['dur'].count()})
isss = pd.DataFrame({'iss_sum': iss.groupby('i')['dur'].sum(),
'iss_count': iss.groupby('i')['dur'].count()})
nsss = pd.DataFrame({'nss_sum': nss.groupby('j')['dur'].sum(),
'nss_count': nss.groupby('j')['dur'].count()})
tst_dfs.append(tsts)
iss_dfs.append(isss)
nss_dfs.append(nsss)
tst = pd.concat(tst_dfs)
iss = pd.concat(iss_dfs); iss.index.rename('pID', inplace = True)
nss = pd.concat(nss_dfs); nss.index.rename('pID', inplace = True)
votes = votedata[['gID', 'totalVotes_p', 'totalVotes_g']].copy()
votes.rename(columns = {'totalVotes_p': 'votes', 'totalVotes_g': 'votes_g'}, inplace = True)
df = pd.concat([votes, tst, iss, nss], axis = 1)
df['gender'] = stdata['Gender']
results = []
for gID in gIDs:
pIDs = pd.unique(data[data['gID'] == gID]['pID'])
iss_pr = nx.pagerank_numpy(inets[gID], weight = 'weight', alpha = a)
both_pr = nx.pagerank_numpy(bnets[gID], weight = 'weight', alpha = a)
rows = [{'pID': pID, 'iss_pr': iss_pr[pID], 'both_pr': both_pr[pID]
} for pID in pIDs]
results.extend(rows)
prs = pd.DataFrame(results)
prs.set_index('pID', inplace = True)
df = pd.concat([df, prs], axis = 1)
grpmaxvotes = pd.DataFrame(df.groupby('gID')['votes'].max())
grpmaxvotes.reset_index(inplace = True)
df['grpmaxvotes'] = df['gID'].apply(lambda x: grpmaxvotes.loc[grpmaxvotes['gID'] == x, 'votes'].item())
df['both'] = df['iss_count'] + df['nss_count']
df['both_rate'] = df['both']/df['tst_sum']
cols = ['tst_sum', 'tst_count', 'iss_sum', 'iss_count', 'nss_sum', 'nss_count', 'iss_pr', 'both_pr']
df[cols] = df[cols].fillna(0)
df['iss_rate'] = df['iss_count']/df['tst_sum']
plt.rcParams['font.size'] = 14
fig, ax = plt.subplots(figsize = (7, 7))
color0 = Color.to_rgba('#bfbfbf')
color1 = Color.to_rgba("#ee6a50")
color2 = Color.to_rgba("#00688b")
ax.set_xlabel('TST')
ax.set_ylabel('ISS Rate')
ldats = []
odats = []
for i in grpmaxvotes.index:
ldat = df[(df['gID'] == grpmaxvotes.loc[i, 'gID']) &
(df['votes'] != grpmaxvotes.loc[i, 'votes'])]
odat = df[(df['gID'] == grpmaxvotes.loc[i, 'gID']) &
(df['votes'] == grpmaxvotes.loc[i, 'votes'])]
ldats.append(ldat)
odats.append(odat)
ldats = pd.concat(ldats)
odats = pd.concat(odats)
fc1 = color0[:3] + (.5, )
ec1 = color0
fc2 = color1[:3] + (.5, )
ec2 = color1
ax.scatter(ldats.tst_sum, ldats.iss_rate, marker = 'o',
color = fc1, edgecolors = ec1, s = 100, linewidths = 2.5,
label = "Group members with less than\nthe maximum number of votes")
ax.scatter(odats.tst_sum, odats.iss_rate, marker = 's',
color = fc2, edgecolors = ec2, s = 100, linewidths = 2.5,
zorder = 2.5,
label = "Group members with the most votes\n(including ties) in each group")
ax.legend(fontsize = 12)
fig.savefig("./img/tst-iss-rate-fig.pdf")
fig.show()
fig.show()