-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathpreact.py
96 lines (79 loc) · 3.84 KB
/
preact.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
'''Pre-activation ResNet in PyTorch.
https://github.com/kuangliu/pytorch-cifar/blob/master/models/preact_resnet.py
Reference:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Identity Mappings in Deep Residual Networks. arXiv:1603.05027
'''
import torch.nn as nn
import torch.nn.functional as F
class PreActBlock(nn.Module):
'''Pre-activation version of the BasicBlock.'''
expansion = 1
def __init__(self, in_planes, planes, stride=1, bn=True):
super(PreActBlock, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes) if bn else nn.Identity()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3,
stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes) if bn else nn.Identity()
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(nn.Conv2d(
in_planes, self.expansion * planes, kernel_size=1,
stride=stride, bias=False))
def forward(self, x):
out = F.relu(self.bn1(x))
shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x
out = self.conv1(out)
out = self.conv2(F.relu(self.bn2(out)))
out += shortcut
return out
class PreActBottleneck(nn.Module):
'''Pre-activation version of the original Bottleneck module.'''
expansion = 4
def __init__(self, in_planes, planes, stride=1):
super(PreActBottleneck, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False)
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(nn.Conv2d(
in_planes, self.expansion * planes, kernel_size=1,
stride=stride, bias=False))
def forward(self, x):
out = F.relu(self.bn1(x))
shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x
out = self.conv1(out)
out = self.conv2(F.relu(self.bn2(out)))
out = self.conv3(F.relu(self.bn3(out)))
out += shortcut
return out
class PreActBottleneck_depthwise(nn.Module):
'''Pre-activation version of the original Bottleneck module.'''
expansion = 4
def __init__(self, in_planes, planes, stride=1):
super(PreActBottleneck_depthwise, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.group_num = in_planes if in_planes < planes else planes
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False, groups=self.group_num)
self.bn2 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False, groups=self.group_num)
self.bn3 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1,
bias=False, groups=self.group_num)
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(
in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False,
groups=self.group_num))
def forward(self, x):
out = F.relu(self.bn1(x))
shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x
out = self.conv1(out)
out = self.conv2(F.relu(self.bn2(out)))
out = self.conv3(F.relu(self.bn3(out)))
out += shortcut
return out