-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathavito-lightgbm-with-ridge-feature-v-2-0.py
313 lines (251 loc) · 10.7 KB
/
avito-lightgbm-with-ridge-feature-v-2-0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
#Initially forked from Bojan's kernel here: https://www.kaggle.com/tunguz/bow-meta-text-and-dense-features-lb-0-2242/code
#improvement using kernel from Nick Brook's kernel here: https://www.kaggle.com/nicapotato/bow-meta-text-and-dense-features-lgbm
#Used oof method from Faron's kernel here: https://www.kaggle.com/mmueller/stacking-starter?scriptVersionId=390867
#Used some text cleaning method from Muhammad Alfiansyah's kernel here: https://www.kaggle.com/muhammadalfiansyah/push-the-lgbm-v19
import time
notebookstart= time.time()
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import os
import gc
print("Data:\n",os.listdir("../input"))
# Models Packages
from sklearn import metrics
from sklearn.metrics import mean_squared_error
from sklearn import feature_selection
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
# Gradient Boosting
import lightgbm as lgb
from sklearn.linear_model import Ridge
from sklearn.cross_validation import KFold
# Tf-Idf
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.pipeline import FeatureUnion
from scipy.sparse import hstack, csr_matrix
from nltk.corpus import stopwords
# Viz
import seaborn as sns
import matplotlib.pyplot as plt
import re
import string
NFOLDS = 5
SEED = 42
VALID = True
class SklearnWrapper(object):
def __init__(self, clf, seed=0, params=None, seed_bool = True):
if(seed_bool == True):
params['random_state'] = seed
self.clf = clf(**params)
def train(self, x_train, y_train):
self.clf.fit(x_train, y_train)
def predict(self, x):
return self.clf.predict(x)
def get_oof(clf, x_train, y, x_test):
oof_train = np.zeros((ntrain,))
oof_test = np.zeros((ntest,))
oof_test_skf = np.empty((NFOLDS, ntest))
for i, (train_index, test_index) in enumerate(kf):
print('\nFold {}'.format(i))
x_tr = x_train[train_index]
y_tr = y[train_index]
x_te = x_train[test_index]
clf.train(x_tr, y_tr)
oof_train[test_index] = clf.predict(x_te)
oof_test_skf[i, :] = clf.predict(x_test)
oof_test[:] = oof_test_skf.mean(axis=0)
return oof_train.reshape(-1, 1), oof_test.reshape(-1, 1)
def cleanName(text):
try:
textProc = text.lower()
# textProc = " ".join(map(str.strip, re.split('(\d+)',textProc)))
#regex = re.compile(u'[^[:alpha:]]')
#textProc = regex.sub(" ", textProc)
textProc = re.sub('[!@#$_“”¨«»®´·º½¾¿¡§£₤‘’]', '', textProc)
textProc = " ".join(textProc.split())
return textProc
except:
return "name error"
def rmse(y, y0):
assert len(y) == len(y0)
return np.sqrt(np.mean(np.power((y - y0), 2)))
print("\nData Load Stage")
training = pd.read_csv('../input/train.csv', index_col = "item_id", parse_dates = ["activation_date"])
traindex = training.index
testing = pd.read_csv('../input/test.csv', index_col = "item_id", parse_dates = ["activation_date"])
testdex = testing.index
ntrain = training.shape[0]
ntest = testing.shape[0]
kf = KFold(ntrain, n_folds=NFOLDS, shuffle=True, random_state=SEED)
y = training.deal_probability.copy()
training.drop("deal_probability",axis=1, inplace=True)
print('Train shape: {} Rows, {} Columns'.format(*training.shape))
print('Test shape: {} Rows, {} Columns'.format(*testing.shape))
print("Combine Train and Test")
df = pd.concat([training,testing],axis=0)
del training, testing
gc.collect()
print('\nAll Data shape: {} Rows, {} Columns'.format(*df.shape))
print("Feature Engineering")
df["price"] = np.log(df["price"]+0.001)
df["price"].fillna(df.price.mean(),inplace=True)
df["image_top_1"].fillna(-999,inplace=True)
print("\nCreate Time Variables")
df["Weekday"] = df['activation_date'].dt.weekday
df["Weekd of Year"] = df['activation_date'].dt.week
df["Day of Month"] = df['activation_date'].dt.day
# Create Validation Index and Remove Dead Variables
training_index = df.loc[df.activation_date<=pd.to_datetime('2017-04-07')].index
validation_index = df.loc[df.activation_date>=pd.to_datetime('2017-04-08')].index
df.drop(["activation_date","image"],axis=1,inplace=True)
print("\nEncode Variables")
categorical = ["user_id","region","city","parent_category_name","category_name","user_type","image_top_1","param_1","param_2","param_3"]
print("Encoding :",categorical)
# Encoder:
lbl = preprocessing.LabelEncoder()
for col in categorical:
df[col].fillna('Unknown')
df[col] = lbl.fit_transform(df[col].astype(str))
print("\nText Features")
# Feature Engineering
# Meta Text Features
textfeats = ["description", "title"]
df['desc_punc'] = df['description'].apply(lambda x: len([c for c in str(x) if c in string.punctuation]))
df['title'] = df['title'].apply(lambda x: cleanName(x))
df["description"] = df["description"].apply(lambda x: cleanName(x))
for cols in textfeats:
df[cols] = df[cols].astype(str)
df[cols] = df[cols].astype(str).fillna('missing') # FILL NA
df[cols] = df[cols].str.lower() # Lowercase all text, so that capitalized words dont get treated differently
df[cols + '_num_words'] = df[cols].apply(lambda comment: len(comment.split())) # Count number of Words
df[cols + '_num_unique_words'] = df[cols].apply(lambda comment: len(set(w for w in comment.split())))
df[cols + '_words_vs_unique'] = df[cols+'_num_unique_words'] / df[cols+'_num_words'] * 100 # Count Unique Words
print("\n[TF-IDF] Term Frequency Inverse Document Frequency Stage")
russian_stop = set(stopwords.words('russian'))
tfidf_para = {
"stop_words": russian_stop,
"analyzer": 'word',
"token_pattern": r'\w{1,}',
"sublinear_tf": True,
"dtype": np.float32,
"norm": 'l2',
"min_df":5,
"max_df":.9,
"smooth_idf":False
}
def get_col(col_name): return lambda x: x[col_name]
##I added to the max_features of the description. It did not change my score much but it may be worth investigating
vectorizer = FeatureUnion([
('description',TfidfVectorizer(
ngram_range=(1, 2),
max_features=17000,
**tfidf_para,
preprocessor=get_col('description'))),
('title',CountVectorizer(
ngram_range=(1, 2),
stop_words = russian_stop,
#max_features=7000,
preprocessor=get_col('title')))
])
start_vect=time.time()
#Fit my vectorizer on the entire dataset instead of the training rows
#Score improved by .0001
vectorizer.fit(df.to_dict('records'))
ready_df = vectorizer.transform(df.to_dict('records'))
tfvocab = vectorizer.get_feature_names()
print("Vectorization Runtime: %0.2f Minutes"%((time.time() - start_vect)/60))
# Drop Text Cols
textfeats = ["description", "title"]
df.drop(textfeats, axis=1,inplace=True)
from sklearn.metrics import mean_squared_error
from math import sqrt
ridge_params = {'alpha':20.0, 'fit_intercept':True, 'normalize':False, 'copy_X':True,
'max_iter':None, 'tol':0.001, 'solver':'auto', 'random_state':SEED}
#Ridge oof method from Faron's kernel
#I was using this to analyze my vectorization, but figured it would be interesting to add the results back into the dataset
#It doesn't really add much to the score, but it does help lightgbm converge faster
ridge = SklearnWrapper(clf=Ridge, seed = SEED, params = ridge_params)
ridge_oof_train, ridge_oof_test = get_oof(ridge, ready_df[:ntrain], y, ready_df[ntrain:])
rms = sqrt(mean_squared_error(y, ridge_oof_train))
print('Ridge OOF RMSE: {}'.format(rms))
print("Modeling Stage")
ridge_preds = np.concatenate([ridge_oof_train, ridge_oof_test])
df['ridge_preds'] = ridge_preds
# Combine Dense Features with Sparse Text Bag of Words Features
X = hstack([csr_matrix(df.loc[traindex,:].values),ready_df[0:traindex.shape[0]]]) # Sparse Matrix
testing = hstack([csr_matrix(df.loc[testdex,:].values),ready_df[traindex.shape[0]:]])
tfvocab = df.columns.tolist() + tfvocab
for shape in [X,testing]:
print("{} Rows and {} Cols".format(*shape.shape))
print("Feature Names Length: ",len(tfvocab))
del df
gc.collect();
print("\nModeling Stage")
X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.10, random_state=23)
del ridge_preds,vectorizer,ready_df
gc.collect();
print("Light Gradient Boosting Regressor")
lgbm_params = {
'task': 'train',
'boosting_type': 'gbdt',
'objective': 'regression',
'metric': 'rmse',
# 'max_depth': 15,
'num_leaves': 270,
'feature_fraction': 0.5,
'bagging_fraction': 0.75,
# 'bagging_freq': 5,
'learning_rate': 0.018,
'verbose': 0
}
if VALID == True:
X_train, X_valid, y_train, y_valid = train_test_split(
X, y, test_size=0.10, random_state=23)
# LGBM Dataset Formatting
lgtrain = lgb.Dataset(X_train, y_train,
feature_name=tfvocab,
categorical_feature = categorical)
lgvalid = lgb.Dataset(X_valid, y_valid,
feature_name=tfvocab,
categorical_feature = categorical)
del X, X_train; gc.collect()
# Go Go Go
lgb_clf = lgb.train(
lgbm_params,
lgtrain,
num_boost_round=20000,
valid_sets=[lgtrain, lgvalid],
valid_names=['train','valid'],
early_stopping_rounds=50,
verbose_eval=100
)
print("Model Evaluation Stage")
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_valid, lgb_clf.predict(X_valid))))
del X_valid ; gc.collect()
else:
# LGBM Dataset Formatting
lgtrain = lgb.Dataset(X, y,
feature_name=tfvocab,
categorical_feature = categorical)
del X; gc.collect()
# Go Go Go
lgb_clf = lgb.train(
lgbm_params,
lgtrain,
num_boost_round=1380,
verbose_eval=100
)
# Feature Importance Plot
f, ax = plt.subplots(figsize=[7,10])
lgb.plot_importance(lgb_clf, max_num_features=50, ax=ax)
plt.title("Light GBM Feature Importance")
plt.savefig('feature_import.png')
print("Model Evaluation Stage")
lgpred = lgb_clf.predict(testing)
#Mixing lightgbm with ridge. I haven't really tested if this improves the score or not
#blend = 0.95*lgpred + 0.05*ridge_oof_test[:,0]
lgsub = pd.DataFrame(lgpred,columns=["deal_probability"],index=testdex)
lgsub['deal_probability'].clip(0.0, 1.0, inplace=True) # Between 0 and 1
lgsub.to_csv("lgsub.csv",index=True,header=True)
#print("Model Runtime: %0.2f Minutes"%((time.time() - modelstart)/60))
print("Notebook Runtime: %0.2f Minutes"%((time.time() - notebookstart)/60))