-
Notifications
You must be signed in to change notification settings - Fork 2
/
models_seggpt.py
535 lines (464 loc) · 19.7 KB
/
models_seggpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
##########################
import fvcore.nn.weight_init as weight_init
#from detectron2.layers import CNNBlockBase, get_norm
from fairscale.nn.checkpoint import checkpoint_wrapper
from timm.models.layers import DropPath, trunc_normal_
from timm.models.vision_transformer import Mlp
from .util.vitdet_utils import (
PatchEmbed,
add_decomposed_rel_pos,
get_abs_pos,
window_partition,
window_unpartition,
LayerNorm2D,
)
def get_norm(norm_type, num_features, **kwargs):
if norm_type == "BN":
return nn.BatchNorm2d(num_features, **kwargs)
elif norm_type == "GN":
return nn.GroupNorm(num_groups=32, num_channels=num_features, **kwargs)
elif norm_type == "LN":
return nn.LayerNorm(normalized_shape=[num_features], **kwargs)
elif norm_type == "IN":
return nn.InstanceNorm2d(num_features, **kwargs)
else:
raise ValueError(f"Unknown normalization type: {norm_type}")
class Attention(nn.Module):
"""Multi-head Attention block with relative position embeddings."""
def __init__(
self,
dim,
num_heads=8,
qkv_bias=True,
use_rel_pos=False,
rel_pos_zero_init=True,
input_size=None,
):
"""
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads.
qkv_bias (bool: If True, add a learnable bias to query, key, value.
rel_pos (bool): If True, add relative positional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
input_size (int or None): Input resolution for calculating the relative positional
parameter size.
"""
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
self.use_rel_pos = use_rel_pos
if self.use_rel_pos:
# initialize relative positional embeddings
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
if not rel_pos_zero_init:
trunc_normal_(self.rel_pos_h, std=0.02)
trunc_normal_(self.rel_pos_w, std=0.02)
def forward(self, x):
B, H, W, _ = x.shape
# qkv with shape (3, B, nHead, H * W, C)
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
# q, k, v with shape (B * nHead, H * W, C)
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
attn = (q * self.scale) @ k.transpose(-2, -1)
if self.use_rel_pos:
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
attn = attn.softmax(dim=-1)
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
x = self.proj(x)
return x
class CustomCNNBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(CustomCNNBlock, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
self.norm = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
return self.relu(self.norm(self.conv(x)))
class ResBottleneckBlock(CustomCNNBlock):
"""
The standard bottleneck residual block without the last activation layer.
It contains 3 conv layers with kernels 1x1, 3x3, 1x1.
"""
def __init__(
self,
in_channels,
out_channels,
bottleneck_channels,
norm="LN",
act_layer=nn.GELU,
):
"""
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
bottleneck_channels (int): number of output channels for the 3x3
"bottleneck" conv layers.
norm (str or callable): normalization for all conv layers.
See :func:`layers.get_norm` for supported format.
act_layer (callable): activation for all conv layers.
"""
super().__init__(in_channels, out_channels, 1)
self.conv1 = nn.Conv2d(in_channels, bottleneck_channels, 1, bias=False)
self.norm1 = get_norm(norm, bottleneck_channels)
self.act1 = act_layer()
self.conv2 = nn.Conv2d(
bottleneck_channels,
bottleneck_channels,
3,
padding=1,
bias=False,
)
self.norm2 = get_norm(norm, bottleneck_channels)
self.act2 = act_layer()
self.conv3 = nn.Conv2d(bottleneck_channels, out_channels, 1, bias=False)
self.norm3 = get_norm(norm, out_channels)
for layer in [self.conv1, self.conv2, self.conv3]:
weight_init.c2_msra_fill(layer)
for layer in [self.norm1, self.norm2]:
layer.weight.data.fill_(1.0)
layer.bias.data.zero_()
# zero init last norm layer.
self.norm3.weight.data.zero_()
self.norm3.bias.data.zero_()
def forward(self, x):
out = x
for layer in self.children():
out = layer(out)
out = x + out
return out
class Block(nn.Module):
"""Transformer blocks with support of window attention and residual propagation blocks"""
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=True,
drop_path=0.0,
norm_layer=nn.LayerNorm,
act_layer=nn.GELU,
use_rel_pos=False,
rel_pos_zero_init=True,
window_size=0,
use_residual_block=False,
input_size=None,
):
"""
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads in each ViT block.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
drop_path (float): Stochastic depth rate.
norm_layer (nn.Module): Normalization layer.
act_layer (nn.Module): Activation layer.
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
window_size (int): Window size for window attention blocks. If it equals 0, then not
use window attention.
use_residual_block (bool): If True, use a residual block after the MLP block.
input_size (int or None): Input resolution for calculating the relative positional
parameter size.
"""
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
input_size=input_size if window_size == 0 else (window_size, window_size),
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer)
self.window_size = window_size
self.use_residual_block = use_residual_block
if use_residual_block:
# Use a residual block with bottleneck channel as dim // 2
self.residual = ResBottleneckBlock(
in_channels=dim,
out_channels=dim,
bottleneck_channels=dim // 2,
norm="LN",
act_layer=act_layer,
)
def forward(self, x, merge=0):
shortcut = x
x = self.norm1(x)
# Window partition
if self.window_size > 0:
H, W = x.shape[1], x.shape[2]
x, pad_hw = window_partition(x, self.window_size)
x = self.attn(x)
# Reverse window partition
if self.window_size > 0:
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
# feature ensemble
if merge > 0:
prompt, inputs = x.split(x.shape[1] // 2, dim=1)
if merge == 1:
num_prompts = x.shape[0] // 2
inputs = inputs.reshape(2, num_prompts, -1)
inputs = inputs.mean(dim=1, keepdim=True).expand_as(inputs)
inputs = inputs.reshape(*prompt.shape)
else:
inputs = inputs.mean(dim=0, keepdim=True).expand_as(inputs)
x = torch.cat([prompt, inputs], dim=1)
x = shortcut + self.drop_path(x)
x = x + self.drop_path(self.mlp(self.norm2(x)))
if self.use_residual_block:
x = self.residual(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
return x
class SegGPT(nn.Module):
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
embed_dim=1024,
depth=24,
num_heads=16,
mlp_ratio=4.,
qkv_bias=True,
drop_path_rate=0.,
norm_layer=nn.LayerNorm,
act_layer=nn.GELU,
use_abs_pos=True,
use_rel_pos=False,
rel_pos_zero_init=True,
window_size=0,
window_block_indexes=(),
residual_block_indexes=(),
use_act_checkpoint=False,
pretrain_img_size=224,
pretrain_use_cls_token=True,
out_feature="last_feat",
decoder_embed_dim=128,
loss_func="smoothl1",
):
super().__init__()
# --------------------------------------------------------------------------
self.pretrain_use_cls_token = pretrain_use_cls_token
self.patch_size = patch_size
self.patch_embed = PatchEmbed(
kernel_size=(patch_size, patch_size),
stride=(patch_size, patch_size),
in_chans=in_chans,
embed_dim=embed_dim,
)
self.patch_embed.num_patches = (img_size[0] // patch_size) * (img_size[1] // patch_size)
self.mask_token = nn.Parameter(torch.zeros(1, 1, 1, embed_dim))
self.segment_token_x = nn.Parameter(torch.zeros(1, 1, 1, embed_dim))
self.segment_token_y = nn.Parameter(torch.zeros(1, 1, 1, embed_dim))
# token for seg types
self.type_token_cls = nn.Parameter(torch.zeros(1, 1, 1, embed_dim))
self.type_token_ins = nn.Parameter(torch.zeros(1, 1, 1, embed_dim))
if use_abs_pos:
# Initialize absolute positional embedding with pretrain image size.
num_patches = (pretrain_img_size // patch_size) * (pretrain_img_size // patch_size)
num_positions = (num_patches + 1) if pretrain_use_cls_token else num_patches
self.pos_embed = nn.Parameter(torch.zeros(1, num_positions, embed_dim), requires_grad=True)
else:
self.pos_embed = None
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
self.blocks = nn.ModuleList()
for i in range(depth):
block = Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
drop_path=dpr[i],
norm_layer=norm_layer,
act_layer=act_layer,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
window_size=window_size if i in window_block_indexes else 0,
use_residual_block=i in residual_block_indexes,
input_size=(img_size[0] // patch_size, img_size[1] // patch_size),
)
if use_act_checkpoint:
block = checkpoint_wrapper(block)
self.blocks.append(block)
self._out_feature_channels = {out_feature: embed_dim}
self._out_feature_strides = {out_feature: patch_size}
self._out_features = [out_feature]
if self.pos_embed is not None:
trunc_normal_(self.pos_embed, std=0.02)
self.norm = norm_layer(embed_dim)
# --------------------------------------------------------------------------
# --------------------------------------------------------------------------
self.decoder_embed_dim = decoder_embed_dim
self.decoder_embed = nn.Linear(embed_dim*4, patch_size ** 2 * self.decoder_embed_dim, bias=True) # decoder to patch
self.decoder_pred = nn.Sequential(
nn.Conv2d(self.decoder_embed_dim, self.decoder_embed_dim, kernel_size=3, padding=1, ),
LayerNorm2D(self.decoder_embed_dim),
nn.GELU(),
nn.Conv2d(self.decoder_embed_dim, 3, kernel_size=1, bias=True), # decoder to patch
)
# --------------------------------------------------------------------------
self.loss_func = loss_func
torch.nn.init.normal_(self.mask_token, std=.02)
torch.nn.init.normal_(self.segment_token_x, std=.02)
torch.nn.init.normal_(self.segment_token_y, std=.02)
torch.nn.init.normal_(self.type_token_cls, std=.02)
torch.nn.init.normal_(self.type_token_ins, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def patchify(self, imgs):
"""
imgs: (N, 3, H, W)
x: (N, L, patch_size**2 *3)
"""
p = self.patch_size
assert imgs.shape[2] == 2 * imgs.shape[3] and imgs.shape[2] % p == 0
w = imgs.shape[3] // p
h = w * 2
x = imgs.reshape(shape=(imgs.shape[0], 3, h, p, w, p))
x = torch.einsum('nchpwq->nhwpqc', x)
x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 3))
return x
def unpatchify(self, x):
"""
x: (N, L, patch_size**2 *3)
imgs: (N, 3, H, W)
"""
p = self.patch_size
w = int((x.shape[1]*0.5)**.5)
h = w * 2
assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, p, p, 3))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], 3, h * p, w * p))
return imgs
def forward_encoder(self, imgs, tgts, bool_masked_pos, seg_type, merge_between_batch=-1):
# embed patches
x = self.patch_embed(imgs)
y = self.patch_embed(tgts)
batch_size, Hp, Wp, _ = x.size()
seq_len = Hp * Wp
mask_token = self.mask_token.expand(batch_size, Hp, Wp, -1)
# replace the masked visual tokens by mask_token
w = bool_masked_pos.unsqueeze(-1).type_as(mask_token).reshape(-1, Hp, Wp, 1)
y = y * (1 - w) + mask_token * w
# add pos embed w/o cls token
x = x + self.segment_token_x
y = y + self.segment_token_y
if self.pos_embed is not None:
x = x + get_abs_pos(
self.pos_embed, self.pretrain_use_cls_token, (x.shape[1], x.shape[2])
)
y = y + get_abs_pos(
self.pos_embed, self.pretrain_use_cls_token, (y.shape[1], y.shape[2])
)
# add type tokens for cls and ins
type_emb = torch.zeros(batch_size, 1, 1, self.type_token_cls.shape[-1]).to(x.device)
type_emb[seg_type==0] = self.type_token_cls
type_emb[seg_type==1] = self.type_token_ins
x = x + type_emb
y = y + type_emb
x = torch.cat((x, y), dim=0)
merge_idx = 2
# apply Transformer blocks
out = []
for idx, blk in enumerate(self.blocks):
merge = 0
if merge_between_batch >= 0 and idx >= merge_between_batch:
merge = 1 if merge_idx >= idx else 2
x = blk(x, merge=merge)
if idx == merge_idx:
x = (x[:x.shape[0]//2] + x[x.shape[0]//2:]) * 0.5
if idx in [5, 11, 17, 23]:
out.append(self.norm(x))
return out
def forward_decoder(self, x):
x = torch.cat(x, dim=-1)
x = self.decoder_embed(x) # BxhxwxC
p = self.patch_size
h, w = x.shape[1], x.shape[2]
x = x.reshape(shape=(x.shape[0], h, w, p, p, self.decoder_embed_dim))
x = torch.einsum('nhwpqc->nchpwq', x)
x = x.reshape(shape=(x.shape[0], -1, h * p, w * p))
x = self.decoder_pred(x) # Bx3xHxW
return x
def forward_loss(self, pred, tgts, mask, valid):
"""
tgts: [N, 3, H, W]
pred: [N, 3, H, W]
mask: [N, L], 0 is keep, 1 is remove,
valid: [N, 3, H, W]
"""
mask = mask[:, :, None].repeat(1, 1, self.patch_size**2 * 3)
mask = self.unpatchify(mask)
mask = mask * valid
target = tgts
if self.loss_func == "l1l2":
loss = ((pred - target).abs() + (pred - target) ** 2.) * 0.5
elif self.loss_func == "l1":
loss = (pred - target).abs()
elif self.loss_func == "l2":
loss = (pred - target) ** 2.
elif self.loss_func == "smoothl1":
loss = F.smooth_l1_loss(pred, target, reduction="none", beta=0.01)
loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches
return loss
def forward(self, imgs, tgts, bool_masked_pos=None, valid=None, seg_type=None, merge_between_batch=-1):
if bool_masked_pos is None:
bool_masked_pos = torch.zeros((imgs.shape[0], self.patch_embed.num_patches), dtype=torch.bool).to(imgs.device)
else:
bool_masked_pos = bool_masked_pos.flatten(1).to(torch.bool)
latent = self.forward_encoder(imgs, tgts, bool_masked_pos, seg_type, merge_between_batch=merge_between_batch)
pred = self.forward_decoder(latent) # [N, L, p*p*3]
loss = self.forward_loss(pred, tgts, bool_masked_pos, valid)
return loss, self.patchify(pred), bool_masked_pos
def seggpt_vit_large_patch16_input896x448(**kwargs):
model = SegGPT(
img_size=(896, 448), patch_size=16, embed_dim=1024, depth=24, num_heads=16,
drop_path_rate=0.1, window_size=14, qkv_bias=True,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6),
window_block_indexes=(list(range(0, 2)) + list(range(3, 5)) + list(range(6, 8)) + list(range(9, 11)) + \
list(range(12, 14)), list(range(15, 17)), list(range(18, 20)), list(range(21, 23))),
residual_block_indexes=[], use_rel_pos=True, out_feature="last_feat",
decoder_embed_dim=64,
loss_func="smoothl1",
**kwargs)
return model
def get_vit_lr_decay_rate(name, lr_decay_rate=1.0, num_layers=12):
"""
Calculate lr decay rate for different ViT blocks.
Args:
name (string): parameter name.
lr_decay_rate (float): base lr decay rate.
num_layers (int): number of ViT blocks.
Returns:
lr decay rate for the given parameter.
"""
layer_id = num_layers + 1
if name.startswith("backbone"):
if ".pos_embed" in name or ".patch_embed" in name:
layer_id = 0
elif ".blocks." in name and ".residual." not in name:
layer_id = int(name[name.find(".blocks.") :].split(".")[2]) + 1
return lr_decay_rate ** (num_layers + 1 - layer_id)