-
Notifications
You must be signed in to change notification settings - Fork 2
/
seggpt.py
99 lines (84 loc) · 3.17 KB
/
seggpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from PIL import Image, ImageFilter, ImageEnhance, ImageOps, ImageDraw, ImageChops, ImageFont
from PIL.PngImagePlugin import PngInfo
from .models_seggpt import seggpt_vit_large_patch16_input896x448
from .seggpt_engine import inference_image_pil
import torch
import numpy as np
import math
import comfy.utils
import sys
INT = ("INT", {"default": 512,
"min": -10240,
"max": 10240,
"step": 64})
def get_image_size(IMAGE) -> tuple[int, int]:
samples = IMAGE.movedim(-1, 1)
size = samples.shape[3], samples.shape[2]
# size = size.movedim(1, -1)
return size
def convert_to_nearest_multiple_of_64(num):
return ((num + 31) // 64) * 64
import os
# 获取当前文件的目录
def prepare_model(seg_type='semantic'):
# build model
model = seggpt_vit_large_patch16_input896x448()
model.seg_type = seg_type
# load model
current_directory = os.path.dirname(os.path.abspath(__file__))
checkpoint = torch.load(os.path.join(current_directory,'seggpt_vit_large.pth'), map_location='cpu')
msg = model.load_state_dict(checkpoint['model'], strict=False)
model.eval()
return model
def pil2tensor(image):
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
class SegGPT:
upscale_methods = ["nearest-exact", "bilinear", "area"]
crop_methods = ["disabled", "center"]
def __init__(self) -> None:
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"images": ("IMAGE",),
"prompt": ("IMAGE",),
"promptMask": ("IMAGE",),
}}
RETURN_TYPES = ("IMAGE","IMAGE",)
RETURN_NAMES = ("MASKS", "PREVIEW",)
FUNCTION = "doSegGPT"
CATEGORY = "SegGPT"
def doSegGPT(self, images, prompt,promptMask):
device = comfy.model_management.get_torch_device()
model = prepare_model().to(device)
prompt = Image.fromarray(np.clip(255. * prompt[0].cpu().numpy(), 0, 255).astype(np.uint8))
promptMask = Image.fromarray(np.clip(255. * promptMask[0].cpu().numpy(), 0, 255).astype(np.uint8))
results = []
resultsPrev = []
ii = 0
for image in images:
i = 255. * image.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
rImg,rImgPrev = inference_image_pil(model,device,img,[prompt],[promptMask])
rNPImg = pil2tensor(rImg)
rNPImgPrev = pil2tensor(rImgPrev)
results.append(rNPImg)
resultsPrev.append(rNPImgPrev)
ii = ii + 1
print(f"segGPT ok:{ii}")
r1 = torch.cat(results, dim=0)
r2 = torch.cat(resultsPrev, dim=0)
del model
return (r1,r2)
'''
seggpt_test = Image.open("seggpt_test.jpg")
prompt = Image.open("prompt.jpg")
promptMask = Image.open("promptMask.jpg")
device = torch.device("cuda")
model = prepare_model().to(device)
mask,preview = inference_image_pil(model,device,seggpt_test,[prompt],[promptMask])
mask.save('mask.jpg')
preview.save('preview.jpg')
#inference_image(model, device, "seggpt_test.jpg", ["prompt.jpg"], ["promptMask.jpg"], 'mask.jpg','preview.jpg')
'''