-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathseggpt_inference.py
74 lines (57 loc) · 3.14 KB
/
seggpt_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os
import argparse
import torch
import numpy as np
from seggpt_engine import inference_image, inference_video
import models_seggpt
imagenet_mean = np.array([0.485, 0.456, 0.406])
imagenet_std = np.array([0.229, 0.224, 0.225])
def get_args_parser():
parser = argparse.ArgumentParser('SegGPT inference', add_help=False)
parser.add_argument('--ckpt_path', type=str, help='path to ckpt',
default='seggpt_vit_large.pth')
parser.add_argument('--model', type=str, help='dir to ckpt',
default='seggpt_vit_large_patch16_input896x448')
parser.add_argument('--input_image', type=str, help='path to input image to be tested',
default=None)
parser.add_argument('--input_video', type=str, help='path to input video to be tested',
default=None)
parser.add_argument('--num_frames', type=int, help='number of prompt frames in video',
default=0)
parser.add_argument('--prompt_image', type=str, nargs='+', help='path to prompt image',
default=None)
parser.add_argument('--prompt_target', type=str, nargs='+', help='path to prompt target',
default=None)
parser.add_argument('--seg_type', type=str, help='embedding for segmentation types',
choices=['instance', 'semantic'], default='instance')
parser.add_argument('--device', type=str, help='cuda or cpu',
default='cuda')
parser.add_argument('--output_dir', type=str, help='path to output',
default='./')
return parser.parse_args()
def prepare_model(chkpt_dir, arch='seggpt_vit_large_patch16_input896x448', seg_type='instance'):
# build model
model = getattr(models_seggpt, arch)()
model.seg_type = seg_type
# load model
checkpoint = torch.load(chkpt_dir, map_location='cpu')
msg = model.load_state_dict(checkpoint['model'], strict=False)
model.eval()
return model
if __name__ == '__main__':
args = get_args_parser()
device = torch.device(args.device)
model = prepare_model(args.ckpt_path, args.model, args.seg_type).to(device)
print('Model loaded.')
assert args.input_image or args.input_video and not (args.input_image and args.input_video)
if args.input_image is not None:
assert args.prompt_image is not None and args.prompt_target is not None
img_name = os.path.basename(args.input_image)
out_path = os.path.join(args.output_dir, "output_" + '.'.join(img_name.split('.')[:-1]) + '.png')
inference_image(model, device, args.input_image, args.prompt_image, args.prompt_target, out_path)
if args.input_video is not None:
assert args.prompt_target is not None and len(args.prompt_target) == 1
vid_name = os.path.basename(args.input_video)
out_path = os.path.join(args.output_dir, "output_" + '.'.join(vid_name.split('.')[:-1]) + '.mp4')
inference_video(model, device, args.input_video, args.num_frames, args.prompt_image, args.prompt_target, out_path)
print('Finished.')