-
Notifications
You must be signed in to change notification settings - Fork 3
/
factor_vae_dsprites_v2.py
229 lines (195 loc) · 12.2 KB
/
factor_vae_dsprites_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import tensorflow as tf
import numpy as np
import time
import datetime
from vae_dsprites_v2 import VAE
class FactorVAE(VAE):
def __init__(self, gamma):
# VAE parameters
self.z_dim = 10
self.gamma = gamma
# Iterations parameters
self.max_it = 1000
self.stat_every = 100
self.saving_every = 1e8
# Directories
date = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
model_name = 'factorvae_dsprites_gamma' + str(gamma)
self.data_path = 'database/'
self.model_path = 'results/' + model_name + '_' + date + '/'
self.checkpoint_path = self.model_path + 'checkpoints/model'
self.tb_path = self.model_path + 'tb_summaries/'
# Data
self.data_file = self.data_path + 'dsprites_ndarray_co1sh3sc6or40x32y32_64x64.npz'
self.data_train, self.data_test, self.all_imgs, self.all_factors, self.n_classes = self._data_init()
self.iterator, self.handle, self.train_img_ph, self.iterator_train, self.test_img_ph, self.iterator_test =\
self._iterator_init(batch_size=64)
# Model setup
self.input_vae, self.enc_mean, self.enc_logvar, self.z_sample, self.dec_logit, self.dec_sigm, \
self.dec_mean_logit, self.dec_mean_sigm = self._vae_init(inputs=self.iterator.get_next())
self.vae_loss, self.recon_loss, self.tc_estimate, self.disc_loss = self._loss_init()
self.vae_train_step, self.disc_train_step = self._optimizer_init()
# Savers
self.sess = tf.Session()
self.saver = tf.train.Saver(keep_checkpoint_every_n_hours=1)
self.train_writer = tf.summary.FileWriter(self.tb_path + 'train', self.sess.graph)
self.test_writer = tf.summary.FileWriter(self.tb_path + 'test')
tf.summary.scalar('vae_loss', self.vae_loss)
tf.summary.scalar('recon_loss', self.recon_loss)
tf.summary.scalar('disc_loss', self.disc_loss)
tf.summary.scalar('tc_estimate', self.tc_estimate)
# Initialization of variables
self.sess.run(tf.global_variables_initializer())
# Initialization of iterators
self.sess.run([self.iterator_train.initializer, self.iterator_test.initializer],
feed_dict={self.train_img_ph: self.data_train, self.test_img_ph: self.data_test})
# Initialization of handles
self.train_handle = self.sess.run(self.iterator_train.string_handle())
self.test_handle = self.sess.run(self.iterator_test.string_handle())
def train(self, final_evaluation=False):
start_time = time.time()
merged = tf.summary.merge_all()
print("Beginning training")
print("Beginning training", file=open(self.model_path + 'train.log', 'w'))
it = 0
while it < self.max_it:
it += 1
self.sess.run([self.vae_train_step, self.disc_train_step], feed_dict={self.handle: self.train_handle})
if it % self.stat_every == 0:
# Train evaluation
vae_loss, recon_loss, tc_term, disc_loss, summ = self.sess.run(
[self.vae_loss, self.recon_loss, self.tc_estimate, self.disc_loss, merged],
feed_dict={self.handle: self.train_handle})
print("Iteration %i (train):\n VAE loss %f - Rec loss %f - TC est %f - Disc loss %f" % (
it, vae_loss, recon_loss, tc_term, disc_loss), flush=True)
print("Iteration %i (train):\n VAE loss %f - Rec loss %f - TC est %f - Disc loss %f" % (
it, vae_loss, recon_loss, tc_term, disc_loss), flush=True,
file=open(self.model_path + 'train.log', 'a'))
self.train_writer.add_summary(summ, it)
# Test evaluation
vae_loss, recon_loss, tc_term, disc_loss, summ = self.sess.run(
[self.vae_loss, self.recon_loss, self.tc_estimate, self.disc_loss, merged],
feed_dict={self.handle: self.test_handle})
print("Iteration %i (test):\n VAE loss %f - Rec loss %f - TC est %f - Disc loss %f" % (
it, vae_loss, recon_loss, tc_term, disc_loss), flush=True)
print("Iteration %i (test):\n VAE loss %f - Rec loss %f - TC est %f - Disc loss %f" % (
it, vae_loss, recon_loss, tc_term, disc_loss), flush=True, file=open(self.model_path + 'train.log', 'a'))
self.test_writer.add_summary(summ, it)
time_usage = str(datetime.timedelta(seconds=int(round(time.time() - start_time))))
print("Time usage: " + time_usage)
print("Time usage: " + time_usage, file=open(self.model_path + 'train.log', 'a'))
if it % self.saving_every == 0:
save_path = self.saver.save(self.sess, self.checkpoint_path, global_step=it)
print("Model saved to: %s" % save_path)
print("Model saved to: %s" % save_path, file=open(self.model_path + 'train.log', 'a'))
save_path = self.saver.save(self.sess, self.checkpoint_path, global_step=it)
print("Model saved to: %s" % save_path)
print("Model saved to: %s" % save_path, file=open(self.model_path + 'train.log', 'a'))
# Closing savers
self.train_writer.close()
self.test_writer.close()
# Total time
time_usage = str(datetime.timedelta(seconds=int(round(time.time() - start_time))))
print("Total training time: " + time_usage)
print("Total training time: " + time_usage, file=open(self.model_path + 'train.log', 'a'))
if final_evaluation:
print("Evaluating final model...")
mean_dis_metric = self.evaluate_mean_disentanglement()
recon_loss_test = self.evaluate_test_recon_loss()
print("Mean Disentanglement Metric: " + str(mean_dis_metric),
file=open(self.model_path + 'train.log', 'a'))
print("Test Reconstruction Loss: " + str(recon_loss_test),
file=open(self.model_path + 'train.log', 'a'))
def _discriminator_init(self, inputs, reuse=False):
with tf.variable_scope("discriminator"):
n_units = 1000
disc_1 = tf.layers.dense(inputs=inputs, units=n_units, activation=tf.nn.leaky_relu, name="disc_1", reuse=reuse)
disc_2 = tf.layers.dense(inputs=disc_1, units=n_units, activation=tf.nn.leaky_relu, name="disc_2", reuse=reuse)
disc_3 = tf.layers.dense(inputs=disc_2, units=n_units, activation=tf.nn.leaky_relu, name="disc_3", reuse=reuse)
disc_4 = tf.layers.dense(inputs=disc_3, units=n_units, activation=tf.nn.leaky_relu, name="disc_4", reuse=reuse)
disc_5 = tf.layers.dense(inputs=disc_4, units=n_units, activation=tf.nn.leaky_relu, name="disc_5", reuse=reuse)
disc_6 = tf.layers.dense(inputs=disc_5, units=n_units, activation=tf.nn.leaky_relu, name="disc_6", reuse=reuse)
logits = tf.layers.dense(inputs=disc_6, units=2, name="disc_logits", reuse=reuse)
probabilities = tf.nn.softmax(logits, name="disc_prob")
return logits, probabilities
def _loss_init(self):
with tf.name_scope("disc"):
# Get samples from the second batch
input_aux = self.iterator.get_next()
aux_mean, aux_logvar = self._encoder_init(inputs=input_aux, reuse=True)
with tf.name_scope("sampling"):
# Reparameterisation trick
with tf.name_scope("noise"):
noise = tf.random_normal(shape=tf.shape(aux_mean))
with tf.name_scope("variance"):
variance = tf.exp(aux_logvar / 2)
with tf.name_scope("reparam_trick"):
aux_samples = tf.add(aux_mean, (variance * noise))
real_samples = self.z_sample
# Discrimination of joint samples
logits_real, probs_real = self._discriminator_init(real_samples)
with tf.name_scope("permute_dims"):
# Use second batch to produce independent samples
permuted_rows = []
for i in range(aux_samples.get_shape()[1]):
permuted_rows.append(tf.random_shuffle(aux_samples[:, i]))
permuted_samples = tf.stack(permuted_rows, axis=1)
# Discrimination of independent samples
logits_permuted, probs_permuted = self._discriminator_init(permuted_samples, reuse=True)
with tf.name_scope("loss"):
with tf.name_scope("reconstruction_loss"):
# Reconstruction loss is bernoulli in each pixel
im_flat = tf.reshape(self.input_vae, shape=[-1, 64 * 64 * 1])
logits_flat = tf.reshape(self.dec_logit, shape=[-1, 64 * 64 * 1])
by_pixel_recon = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_flat, labels=im_flat)
by_example_recon = tf.reduce_sum(by_pixel_recon, axis=1)
recon_loss = tf.reduce_mean(by_example_recon, name="recon_loss")
with tf.name_scope("kl_loss"):
# KL against N(0,1) is 0.5 * sum_j ( var_j - logvar_j + mean^2_j - 1 )
with tf.name_scope("variance"):
variance = tf.exp(self.enc_logvar)
with tf.name_scope("squared_mean"):
squared_mean = self.enc_mean ** 2
with tf.name_scope("kl_divergence"):
sum_argument = variance - self.enc_logvar + squared_mean
by_example_kl = 0.5 * tf.reduce_sum(sum_argument, axis=1) - self.z_dim
kl_divergence = tf.reduce_mean(by_example_kl, name="kl_divergence")
with tf.name_scope("tc_loss"):
# FactorVAE paper has gamma * log(D(z) / (1- D(z))) in Algo 2, where D(z) is probability of being real
# Let PT be probability of being true, PF be probability of being false. Then we want log(PT/PF)
# Since PT = exp(logit_T) / [exp(logit_T) + exp(logit_F)]
# and PT = exp(logit_F) / [exp(logit_T) + exp(logit_F)], we have that
# log(PT/PF) = logit_T - logit_F
logit_t = logits_real[:, 0]
logit_f = logits_real[:, 1]
tc_estimate = tf.reduce_mean(logit_t - logit_f, axis=0)
tc_term = self.gamma * tc_estimate
with tf.name_scope("total_vae_loss"):
vae_loss = recon_loss + kl_divergence + tc_term
with tf.name_scope("disc_loss"):
real_samples_loss = tf.reduce_mean(tf.log(probs_real[:, 0]))
permuted_samples_loss = tf.reduce_mean(tf.log(probs_permuted[:, 1]))
disc_loss = - tf.add(0.5 * real_samples_loss,
0.5 * permuted_samples_loss,
name="disc_loss")
return vae_loss, recon_loss, tc_estimate, disc_loss
def _optimizer_init(self):
with tf.name_scope("optimizer"):
with tf.name_scope("vae_optimizer"):
enc_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='encoder')
dec_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='decoder')
vae_vars = enc_vars + dec_vars
vae_optimizer = tf.train.AdamOptimizer(learning_rate=1e-4,
beta1=0.9,
beta2=0.999)
vae_train_step = vae_optimizer.minimize(self.vae_loss, var_list=vae_vars)
with tf.name_scope("disc_optimizer"):
disc_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='discriminator')
disc_optimizer = tf.train.AdamOptimizer(learning_rate=1e-4,
beta1=0.5,
beta2=0.9)
disc_train_step = disc_optimizer.minimize(self.disc_loss, var_list=disc_vars)
return vae_train_step, disc_train_step
if __name__ == "__main__":
vae = FactorVAE(gamma=35)
vae.train()