-
Notifications
You must be signed in to change notification settings - Fork 0
/
detect_mask_image.py
100 lines (81 loc) · 3.45 KB
/
detect_mask_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#command
# python detect_mask_image.py --image images/pic2.jpeg
# importing the libraries
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.models import load_model
import numpy as np
import argparse
import cv2
import os
def mask_image():
# constructing the argument parser and passing the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
help="path to input image")
ap.add_argument("-f", "--face", type=str,
default="face_detector",
help="path to face detector model directory")
ap.add_argument("-m", "--model", type=str,
default="mask_detector.model",
help="path to trained face mask detector model")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
help="minimum probability to filter weak detections")
args = vars(ap.parse_args())
# loading our serialized Face Detector model from disk
print("[INFO] loading face detector model...")
prototxtPath = os.path.sep.join([args["face"], "deploy.prototxt"])
weightsPath = os.path.sep.join([args["face"],
"res10_300x300_ssd_iter_140000.caffemodel"])
net = cv2.dnn.readNet(prototxtPath, weightsPath)
# loading the Face-Mask detector model from disk
print("[INFO] loading face mask detector model...")
model = load_model(args["model"])
# load the input image from disk, and getting the image dimensions
image = cv2.imread(args["image"])
orig = image.copy()
(h, w) = image.shape[:2]
# constructing a blob from the image
blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300),
(104.0, 177.0, 123.0))
# passing the blob through the network and obtain the face detections
print("[INFO] computing face detections...")
net.setInput(blob)
detections = net.forward()
# looping over the detections
for i in range(0, detections.shape[2]):
# extracting the confidence (i.e., probability) of the detection
confidence = detections[0, 0, i, 2]
# filtering out weak detections whose confidence is less than the minimum confidence
if confidence > args["confidence"]:
# computing the (x, y)-coordinates of the bounding box for face
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
(startX, startY) = (max(0, startX), max(0, startY))
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
# extracting the face ROI,
# convert it from BGR to RGB channel ordering,
# resize it to 224x224,
# and preprocess it
face = image[startY:endY, startX:endX]
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
face = cv2.resize(face, (224, 224))
face = img_to_array(face)
face = preprocess_input(face)
face = np.expand_dims(face, axis=0)
# pass the face through the model to determine if the face has a mask or not
(mask, withoutMask) = model.predict(face)[0]
# set the class label and color use to draw the bounding box and text
label = "Mask" if mask > withoutMask else "No Mask"
color = (0, 255, 0) if label == "Mask" else (0, 0, 255)
# display probability in the label
label = "{}: {:.2f}%".format(label, max(mask, withoutMask) * 100)
# display the label and bounding box rectangle on the output frame
cv2.putText(image, label, (startX, startY - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, color, 2)
cv2.rectangle(image, (startX, startY), (endX, endY), color, 2)
# show the output image
cv2.imshow("Output", image)
cv2.waitKey(0)
if __name__ == "__main__":
mask_image()