-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathanime-facegan.py
346 lines (243 loc) · 11.5 KB
/
anime-facegan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import os
from sklearn.utils import shuffle
import time
import cv2
import tqdm
from PIL import Image
from keras.layers import Dense
from keras.layers import Reshape
from keras.layers.core import Activation
from keras.layers.normalization import BatchNormalization
from keras.layers.convolutional import UpSampling2D
from keras.layers.core import Flatten, Dropout
from keras.layers import Input, merge
from keras.layers.pooling import MaxPooling2D
from keras.layers.convolutional import Conv2D, Conv2DTranspose
from keras.models import Model
from keras.optimizers import SGD, Adam, RMSprop
from keras.layers.advanced_activations import LeakyReLU
import matplotlib.pyplot as plt
from misc_layers import MinibatchDiscrimination, SubPixelUpscaling, CustomLRELU, bilinear2x
from keras_contrib.layers import SubPixelUpscaling
import keras.backend as K
from keras.initializers import RandomNormal
K.set_image_dim_ordering('tf')
import glob
os.environ["KERAS_BACKEND"] = "tensorflow"
from sklearn.utils import shuffle
import scipy
import imageio
from PIL import Image
import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
from keras.models import load_model
import keras.backend as K
from scipy.interpolate import spline
from collections import deque
np.random.seed(1337)
# In[2]:
np.random.seed(42)
def get_gen_normal(noise_shape):
noise_shape = noise_shape
kernel_init = 'glorot_uniform'
gen_input = Input(shape = noise_shape)
generator = Conv2DTranspose(filters = 512, kernel_size = (4,4), strides = (1,1), padding = "valid", data_format = "channels_last", kernel_initializer = kernel_init)(gen_input)
generator = BatchNormalization(momentum = 0.5)(generator)
generator = LeakyReLU(0.2)(generator)
generator = Conv2DTranspose(filters = 256, kernel_size = (4,4), strides = (2,2), padding = "same", data_format = "channels_last", kernel_initializer = kernel_init)(generator)
generator = BatchNormalization(momentum = 0.5)(generator)
generator = LeakyReLU(0.2)(generator)
generator = Conv2DTranspose(filters = 128, kernel_size = (4,4), strides = (2,2), padding = "same", data_format = "channels_last", kernel_initializer = kernel_init)(generator)
generator = BatchNormalization(momentum = 0.5)(generator)
generator = LeakyReLU(0.2)(generator)
generator = Conv2DTranspose(filters = 64, kernel_size = (4,4), strides = (2,2), padding = "same", data_format = "channels_last", kernel_initializer = kernel_init)(generator)
generator = BatchNormalization(momentum = 0.5)(generator)
generator = LeakyReLU(0.2)(generator)
generator = Conv2D(filters = 64, kernel_size = (3,3), strides = (1,1), padding = "same", data_format = "channels_last", kernel_initializer = kernel_init)(generator)
generator = BatchNormalization(momentum = 0.5)(generator)
generator = LeakyReLU(0.2)(generator)
generator = Conv2DTranspose(filters = 3, kernel_size = (4,4), strides = (2,2), padding = "same", data_format = "channels_last", kernel_initializer = kernel_init)(generator)
generator = Activation('tanh')(generator)
gen_opt = Adam(lr=0.00015, beta_1=0.5)
generator_model = Model(input = gen_input, output = generator)
generator_model.compile(loss='binary_crossentropy', optimizer=gen_opt, metrics=['accuracy'])
generator_model.summary()
return generator_model
# In[3]:
def get_disc_normal(image_shape=(64,64,3)):
image_shape = image_shape
dropout_prob = 0.4
kernel_init = 'glorot_uniform'
dis_input = Input(shape = image_shape)
discriminator = Conv2D(filters = 64, kernel_size = (4,4), strides = (2,2), padding = "same", data_format = "channels_last", kernel_initializer = kernel_init)(dis_input)
discriminator = LeakyReLU(0.2)(discriminator)
discriminator = Conv2D(filters = 128, kernel_size = (4,4), strides = (2,2), padding = "same", data_format = "channels_last", kernel_initializer = kernel_init)(discriminator)
discriminator = BatchNormalization(momentum = 0.5)(discriminator)
discriminator = LeakyReLU(0.2)(discriminator)
discriminator = Conv2D(filters = 256, kernel_size = (4,4), strides = (2,2), padding = "same", data_format = "channels_last", kernel_initializer = kernel_init)(discriminator)
discriminator = BatchNormalization(momentum = 0.5)(discriminator)
discriminator = LeakyReLU(0.2)(discriminator)
discriminator = Conv2D(filters = 512, kernel_size = (4,4), strides = (2,2), padding = "same", data_format = "channels_last", kernel_initializer = kernel_init)(discriminator)
discriminator = BatchNormalization(momentum = 0.5)(discriminator)
discriminator = LeakyReLU(0.2)(discriminator)
discriminator = Flatten()(discriminator)
discriminator = Dense(1)(discriminator)
discriminator = Activation('sigmoid')(discriminator)
#also try the SGD optimiser, might work better for a few learning rates.
dis_opt = Adam(lr=0.0002, beta_1=0.5)
discriminator_model = Model(input = dis_input, output = discriminator)
discriminator_model.compile(loss='binary_crossentropy', optimizer=dis_opt, metrics=['accuracy'])
discriminator_model.summary()
return discriminator_model
# In[4]:
from collections import deque
np.random.seed(1337)
# In[5]:
def norm_img(img):
img = (img / 127.5) - 1
#image normalisation to keep values between -1 and 1 for stability
return img
def denorm_img(img):
#for output
img = (img + 1) * 127.5
return img.astype(np.uint8)
def sample_from_dataset(batch_size, image_shape, data_dir=None, data = None):
sample_dim = (batch_size,) + image_shape
sample = np.empty(sample_dim, dtype=np.float32)
all_data_dirlist = list(glob.glob(data_dir))
sample_imgs_paths = np.random.choice(all_data_dirlist,batch_size)
for index,img_filename in enumerate(sample_imgs_paths):
image = Image.open(img_filename)
image = image.resize(image_shape[:-1])
image = image.convert('RGB')
image = np.asarray(image)
image = norm_img(image)
sample[index,...] = image
return sample
# In[6]:
def gen_noise(batch_size, noise_shape):
#input noise for the generator should follow a probability distribution, like in this case, the normal distributon.
return np.random.normal(0, 1, size=(batch_size,)+noise_shape)
def generate_images(generator, save_dir):
noise = gen_noise(batch_size,noise_shape)
fake_data_X = generator.predict(noise)
print("Displaying generated images")
plt.figure(figsize=(4,4))
gs1 = gridspec.GridSpec(4, 4)
gs1.update(wspace=0, hspace=0)
rand_indices = np.random.choice(fake_data_X.shape[0],16,replace=False)
for i in range(16):
#plt.subplot(4, 4, i+1)
ax1 = plt.subplot(gs1[i])
ax1.set_aspect('equal')
rand_index = rand_indices[i]
image = fake_data_X[rand_index, :,:,:]
fig = plt.imshow(denorm_img(image))
plt.axis('off')
fig.axes.get_xaxis().set_visible(False)
fig.axes.get_yaxis().set_visible(False)
plt.tight_layout()
plt.savefig(save_dir+str(time.time())+"_GENimage.png",bbox_inches='tight',pad_inches=0)
plt.show()
# In[7]:
def save_img_batch(img_batch,img_save_dir):
plt.figure(figsize=(4,4))
gs1 = gridspec.GridSpec(4, 4)
gs1.update(wspace=0, hspace=0)
rand_indices = np.random.choice(img_batch.shape[0],16,replace=False)
for i in range(16):
#plt.subplot(4, 4, i+1)
ax1 = plt.subplot(gs1[i])
ax1.set_aspect('equal')
rand_index = rand_indices[i]
image = img_batch[rand_index, :,:,:]
fig = plt.imshow(denorm_img(image))
plt.axis('off')
fig.axes.get_xaxis().set_visible(False)
fig.axes.get_yaxis().set_visible(False)
plt.tight_layout()
plt.savefig(img_save_dir,bbox_inches='tight',pad_inches=0)
plt.show()
# In[8]:
noise_shape = (1,1,100)
num_steps = 10000
batch_size = 64
image_shape = None
img_save_dir = "Z:/anime/output"
save_model = True
image_shape = (64,64,3)
data_dir = "Z:\\anime\\data\\*.png"
log_dir = img_save_dir
save_model_dir = img_save_dir
# In[ ]:
discriminator = get_disc_normal(image_shape)
generator = get_gen_normal(noise_shape)
# In[ ]:
discriminator.trainable = False
opt = Adam(lr=0.00015, beta_1=0.5)
gen_inp = Input(shape=noise_shape)
GAN_inp = generator(gen_inp)
GAN_opt = discriminator(GAN_inp)
gan = Model(input = gen_inp, output = GAN_opt)
gan.compile(loss = 'binary_crossentropy', optimizer = opt, metrics=['accuracy'])
gan.summary()
# In[ ]:
avg_disc_fake_loss = deque([0], maxlen=250)
avg_disc_real_loss = deque([0], maxlen=250)
avg_GAN_loss = deque([0], maxlen=250)
# In[ ]:
for step in range(num_steps):
tot_step = step
print("Begin step: ", tot_step)
step_begin_time = time.time()
real_data_X = sample_from_dataset(batch_size, image_shape, data_dir = data_dir)
noise = gen_noise(batch_size,noise_shape)
fake_data_X = generator.predict(noise)
if (tot_step % 10) == 0:
step_num = str(tot_step).zfill(4)
save_img_batch(fake_data_X,img_save_dir+step_num+"_image.png")
#concatenate real and fake data samples
data_X = np.concatenate([real_data_X,fake_data_X])
#add noise to the label inputs
real_data_Y = np.ones(batch_size) - np.random.random_sample(batch_size)*0.2
fake_data_Y = np.random.random_sample(batch_size)*0.2
data_Y = np.concatenate((real_data_Y,fake_data_Y))
discriminator.trainable = True
generator.trainable = False
#training the discriminator on real and fake data can be done together, i.e.,
#on the data_x and data_y, OR it can be done
#one by one as performed below. This is the safer choice and gives better results
#as compared to combining the real and generated samples.
dis_metrics_real = discriminator.train_on_batch(real_data_X,real_data_Y)
dis_metrics_fake = discriminator.train_on_batch(fake_data_X,fake_data_Y)
print("Disc: real loss: %f fake loss: %f" % (dis_metrics_real[0], dis_metrics_fake[0]))
avg_disc_fake_loss.append(dis_metrics_fake[0])
avg_disc_real_loss.append(dis_metrics_real[0])
generator.trainable = True
GAN_X = gen_noise(batch_size,noise_shape)
GAN_Y = real_data_Y
discriminator.trainable = False
gan_metrics = gan.train_on_batch(GAN_X,GAN_Y)
print("GAN loss: %f" % (gan_metrics[0]))
text_file = open(log_dir+"\\training_log.txt", "a")
text_file.write("Step: %d Disc: real loss: %f fake loss: %f GAN loss: %f\n" % (tot_step, dis_metrics_real[0],
dis_metrics_fake[0],gan_metrics[0]))
text_file.close()
avg_GAN_loss.append(gan_metrics[0])
end_time = time.time()
diff_time = int(end_time - step_begin_time)
print("Step %d completed. Time took: %s secs." % (tot_step, diff_time))
if ((tot_step+1) % 500) == 0:
print("-----------------------------------------------------------------")
print("Average Disc_fake loss: %f" % (np.mean(avg_disc_fake_loss)))
print("Average Disc_real loss: %f" % (np.mean(avg_disc_real_loss)))
print("Average GAN loss: %f" % (np.mean(avg_GAN_loss)))
print("-----------------------------------------------------------------")
discriminator.trainable = True
generator.trainable = True
generator.save(save_model_dir+str(tot_step)+"_GENERATOR_weights_and_arch.hdf5")
discriminator.save(save_model_dir+str(tot_step)+"_DISCRIMINATOR_weights_and_arch.hdf5")
# In[ ]: