forked from nianticlabs/monodepth2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainer.py
407 lines (327 loc) · 17.6 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
# Copyright Niantic 2019. Patent Pending. All rights reserved.
#
# This software is licensed under the terms of the Monodepth2 licence
# which allows for non-commercial use only, the full terms of which are made
# available in the LICENSE file.
from __future__ import absolute_import, division, print_function
import numpy as np
import time
import torch
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import json
from utils import *
from kitti_utils import *
from layers import *
import datasets
import networks
from IPython import embed
from dense_reprojection import *
from vis_utils import *
class Trainer:
def __init__(self, options):
self.opt = options
self.log_path = os.path.join(self.opt.log_dir, self.opt.model_name)
# checking height and width are multiples of 32
assert self.opt.height % 32 == 0, "'height' must be a multiple of 32"
assert self.opt.width % 32 == 0, "'width' must be a multiple of 32"
self.models = {}
self.parameters_to_train = []
self.device = torch.device("cpu" if self.opt.no_cuda else "cuda")
self.num_scales = len(self.opt.scales)
self.num_input_frames = len(self.opt.frame_ids)
self.num_pose_frames = 2
assert self.opt.frame_ids[0] == 0, "frame_ids must start with 0"
self.use_pose_net = not (self.opt.use_stereo and self.opt.frame_ids == [0])
if self.opt.use_stereo:
self.opt.frame_ids.append("s")
self.models["encoder"] = networks.ResnetEncoder(self.opt.num_layers, self.opt.weights_init == "pretrained")
self.models["encoder"].to(self.device)
self.parameters_to_train += list(self.models["encoder"].parameters())
self.models["depth"] = networks.DepthDecoder(self.models["encoder"].num_ch_enc, self.opt.scales)
self.models["depth"].to(self.device)
self.parameters_to_train += list(self.models["depth"].parameters())
self.models["pose"] = networks.CorrDecoder(self.models["depth"].num_ch_dec)
self.models["pose"].to(self.device)
self.parameters_to_train += list(self.models["pose"].parameters())
self.model_optimizer = optim.Adam(self.parameters_to_train, self.opt.learning_rate)
self.model_lr_scheduler = optim.lr_scheduler.StepLR(
self.model_optimizer, self.opt.scheduler_step_size, 0.1)
if self.opt.load_weights_folder is not None:
self.load_model()
print("Training model named:\n ", self.opt.model_name)
print("Models and tensorboard events files are saved to:\n ", self.opt.log_dir)
print("Training is using:\n ", self.device)
# data
datasets_dict = {"kitti": datasets.KITTIRAWDataset,
"kitti_odom": datasets.KITTIOdomDataset}
self.dataset = datasets_dict[self.opt.dataset]
fpath = os.path.join(os.path.dirname(__file__), "splits", self.opt.split, "{}_files.txt")
train_filenames = readlines(fpath.format("train"))
val_filenames = readlines(fpath.format("val"))
img_ext = '.png' if self.opt.png else '.jpg'
num_train_samples = len(train_filenames)
self.num_total_steps = num_train_samples // self.opt.batch_size * self.opt.num_epochs
train_dataset = self.dataset(
self.opt.data_path, train_filenames, self.opt.height, self.opt.width,
self.opt.frame_ids, 4, is_train=True, img_ext=img_ext)
self.train_loader = DataLoader(
train_dataset, self.opt.batch_size, True,
num_workers=self.opt.num_workers, pin_memory=True, drop_last=True)
val_dataset = self.dataset(
self.opt.data_path, val_filenames, self.opt.height, self.opt.width,
self.opt.frame_ids, 4, is_train=False, img_ext=img_ext)
self.val_loader = DataLoader(
val_dataset, self.opt.batch_size, True,
num_workers=self.opt.num_workers, pin_memory=True, drop_last=True)
self.val_iter = iter(self.val_loader)
self.writers = {}
for mode in ["train", "val"]:
self.writers[mode] = SummaryWriter(os.path.join(self.log_path, mode))
self.depth_metric_names = [
"de/abs_rel", "de/sq_rel", "de/rms", "de/log_rms", "da/a1", "da/a2", "da/a3"]
print("Using split:\n ", self.opt.split)
print("There are {:d} training items and {:d} validation items\n".format(
len(train_dataset), len(val_dataset)))
self.save_opts()
def set_train(self):
"""Convert all models to training mode
"""
for m in self.models.values():
m.train()
def set_eval(self):
"""Convert all models to testing/evaluation mode
"""
for m in self.models.values():
m.eval()
def train(self):
"""Run the entire training pipeline
"""
self.epoch = 0
self.step = 0
self.start_time = time.time()
for self.epoch in range(self.opt.num_epochs):
self.run_epoch()
if (self.epoch + 1) % self.opt.save_frequency == 0:
self.save_model()
def run_epoch(self):
"""Run a single epoch of training and validation
"""
self.model_lr_scheduler.step()
print("Training")
self.set_train()
for batch_idx, inputs in enumerate(self.train_loader):
before_op_time = time.time()
outputs, losses = self.process_batch(inputs)
self.model_optimizer.zero_grad()
losses["loss"].backward()
self.model_optimizer.step()
duration = time.time() - before_op_time
# log less frequently after the first 2000 steps to save time & disk space
early_phase = batch_idx % self.opt.log_frequency == 0 and self.step < 2000
late_phase = self.step % 2000 == 0
if early_phase or late_phase:
self.log_time(batch_idx, duration, losses["loss"].cpu().data)
if "depth_gt" in inputs:
self.compute_depth_losses(inputs, outputs, losses)
self.log("train", inputs, outputs, losses)
self.val()
self.step += 1
def process_batch(self, inputs):
"""Pass a minibatch through the network and generate images and losses
"""
for key, ipt in inputs.items():
inputs[key] = ipt.to(self.device)
# If we are using a shared encoder for both depth and pose (as advocated
# in monodepthv1), then all images are fed separately through the depth encoder.
all_color_aug = torch.cat([inputs[("color_aug", i, 0)] for i in self.opt.frame_ids])
all_features = self.models["encoder"](all_color_aug)
outputs, decoder_features = self.models["depth"](all_features)
all_features = [torch.split(decoder_features[('features', scale)], self.opt.batch_size) for scale in range(len(self.opt.scales))]
all_outputs = [torch.split(outputs[('depth', scale)], self.opt.batch_size) for scale in range(len(self.opt.scales))]
intrinsics = [inputs[("K", scale)] for scale in range(len(self.opt.scales))]
intrinsics_inv = [inputs[("inv_K", scale)] for scale in range(len(self.opt.scales))]
final_outputs = self.models["pose"](all_features, all_outputs, intrinsics, intrinsics_inv)
losses = self.compute_loss(inputs, final_outputs)
final_loss = self.reduce_loss(losses)
return final_outputs, final_loss
def val(self):
"""Validate the model on a single minibatch
"""
self.set_eval()
try:
inputs = self.val_iter.next()
except StopIteration:
self.val_iter = iter(self.val_loader)
inputs = self.val_iter.next()
with torch.no_grad():
outputs, losses = self.process_batch(inputs)
if "depth_gt" in inputs:
self.compute_depth_losses(inputs, outputs, losses)
self.log("val", inputs, outputs, losses)
del inputs, outputs, losses
self.set_train()
def reduce_loss(self, losses):
final_loss = 0
for scale, scale_weight in enumerate(self.opt.scale_weights):
final_loss += scale_weight * losses[f'scale{scale}']
return {'loss': final_loss}
def compute_loss(self, inputs, model_outputs):
"""Generate the warped (reprojected) color images for a minibatch.
Generated images are saved into the `outputs` dictionary.
"""
loss = {}
for scale in self.opt.scales:
im0_depth = model_outputs[("depth", 0, scale)]
im1_depth = model_outputs[("depth", 1, scale)]
forward_pose = model_outputs[("forward_pose", scale)]
backward_pose = model_outputs[("backward_pose", scale)]
if self.opt.v1_multiscale:
source_scale = scale
else:
im0_depth = F.interpolate(
im0_depth, [self.opt.height, self.opt.width], mode="bilinear", align_corners=False)
im1_depth = F.interpolate(
im1_depth, [self.opt.height, self.opt.width], mode="bilinear", align_corners=False)
forward_pose = F.interpolate(
forward_pose, [self.opt.height, self.opt.width], mode="bilinear", align_corners=False)
backward_pose = F.interpolate(
backward_pose, [self.opt.height, self.opt.width], mode="bilinear", align_corners=False)
source_scale = 0
im0 = inputs[('color', 0, source_scale)]
im1 = inputs[('color', 1, source_scale)]
intrinsics = inputs[('K', source_scale)][:, :3, :3]
intrinsics_inv = inputs[('inv_K', source_scale)][:, :3, :3]
# forward_flow = compute_rigid_flow(im0_depth, forward_pose, intrinsics, intrinsics_inv)
# backward_flow = compute_rigid_flow(im1_depth, backward_pose, intrinsics, intrinsics_inv)
# backward_flow_from_forward_flow = flow_inverse_warp(forward_flow, backward_flow)
# forward_flow_from_backward_flow = flow_inverse_warp(backward_flow, forward_flow)
# forward_flow_mask = compute_flow_mask(forward_flow, forward_flow_from_backward_flow)
# backward_flow_mask = compute_flow_mask(backward_flow, backward_flow_from_forward_flow)
im0_hat, im0_transformed_depth, im1_sampled_depth, valid_mask0 = inverse_warp(im1, im0_depth, forward_pose, intrinsics, intrinsics_inv, im1_depth)
im1_hat, im1_transformed_depth, im0_sampled_depth, valid_mask1 = inverse_warp(im0, im1_depth, backward_pose, intrinsics, intrinsics_inv, im0_depth)
# im0_mask = (valid_mask0 & forward_flow_mask).float().detach()
# im1_mask = (valid_mask1 & backward_flow_mask).float().detach()
im0_mask = valid_mask0.float().detach()
im1_mask = valid_mask1.float().detach()
im0_recon_loss = torch.sum(perception_similarity_loss(im0_hat, im0) * im0_mask) / torch.sum(im0_mask).clamp(min=1)
im1_recon_loss = torch.sum(perception_similarity_loss(im1_hat, im1) * im1_mask) / torch.sum(im1_mask).clamp(min=1)
im0_smooth_loss = edge_aware_smooth_loss(im0_depth, aux=im0)
im1_smooth_loss = edge_aware_smooth_loss(im1_depth, aux=im1)
model_outputs[("color", 0, scale)] = im0_hat
model_outputs[("color", 1, scale)] = im1_hat
# model_outputs[("flow_mask", 0, scale)] = forward_flow_mask
# model_outputs[("flow_mask", 1, scale)] = backward_flow_mask
# model_outputs[("flow", 0, scale)] = forward_flow
# model_outputs[("flow", 1, scale)] = backward_flow
loss[f'scale{scale}'] = self.opt.photo_loss_weight * (im0_recon_loss + im1_recon_loss) + self.opt.smooth_loss_weight * (im0_smooth_loss + im1_smooth_loss)
return loss
def compute_depth_losses(self, inputs, outputs, losses):
"""Compute depth metrics, to allow monitoring during training
This isn't particularly accurate as it averages over the entire batch,
so is only used to give an indication of validation performance
"""
depth_pred = outputs[("depth", 0, 0)]
depth_pred = torch.clamp(F.interpolate(
depth_pred, [375, 1242], mode="bilinear", align_corners=False), 1e-3, 80)
depth_pred = depth_pred.detach()
depth_gt = inputs["depth_gt"]
mask = depth_gt > 0
# garg/eigen crop
crop_mask = torch.zeros_like(mask)
crop_mask[:, :, 153:371, 44:1197] = 1
mask = mask * crop_mask
depth_gt = depth_gt[mask]
depth_pred = depth_pred[mask]
depth_pred *= torch.median(depth_gt) / torch.median(depth_pred)
depth_pred = torch.clamp(depth_pred, min=1e-3, max=80)
depth_errors = compute_depth_errors(depth_gt, depth_pred)
for i, metric in enumerate(self.depth_metric_names):
losses[metric] = np.array(depth_errors[i].cpu())
def log_time(self, batch_idx, duration, loss):
"""Print a logging statement to the terminal
"""
samples_per_sec = self.opt.batch_size / duration
time_sofar = time.time() - self.start_time
training_time_left = (
self.num_total_steps / self.step - 1.0) * time_sofar if self.step > 0 else 0
print_string = "epoch {:>3} | batch {:>6} | examples/s: {:5.1f}" + \
" | loss: {:.5f} | time elapsed: {} | time left: {}"
print(print_string.format(self.epoch, batch_idx, samples_per_sec, loss,
sec_to_hm_str(time_sofar), sec_to_hm_str(training_time_left)))
def log(self, mode, inputs, outputs, losses):
"""Write an event to the tensorboard events file
"""
writer = self.writers[mode]
for l, v in losses.items():
writer.add_scalar("{}".format(l), v, self.step)
for j in range(min(4, self.opt.batch_size)): # write a maxmimum of four images
for s in self.opt.scales:
for frame_id in self.opt.frame_ids:
writer.add_image(
"color_{}_{}/{}".format(frame_id, s, j),
inputs[("color", frame_id, s)][j].data, self.step)
if s == 0:
writer.add_image(
"color_pred_{}_{}/{}".format(frame_id, s, j),
outputs[("color", frame_id, s)][j].data, self.step)
# writer.add_image(
# "flow_pred_{}_{}/{}".format(frame_id, s, j),
# flow_to_image(outputs[("flow", frame_id, s)][j].detach().cpu().numpy()), self.step)
# writer.add_image(
# "mask_from_flow_{}_{}/{}".format(frame_id, s, j),
# heatmap_image(outputs[("flow_mask",frame_id, s)][j].float().detach().cpu().numpy()), self.step)
writer.add_image(
"depth_{}_{}/{}".format(frame_id, s, j),
heatmap_image(outputs[("depth",frame_id, s)][j].detach().cpu().numpy()), self.step)
def save_opts(self):
"""Save options to disk so we know what we ran this experiment with
"""
models_dir = os.path.join(self.log_path, "models")
if not os.path.exists(models_dir):
os.makedirs(models_dir)
to_save = self.opt.__dict__.copy()
with open(os.path.join(models_dir, 'opt.json'), 'w') as f:
json.dump(to_save, f, indent=2)
def save_model(self):
"""Save model weights to disk
"""
save_folder = os.path.join(self.log_path, "models", "weights_{}".format(self.epoch))
if not os.path.exists(save_folder):
os.makedirs(save_folder)
for model_name, model in self.models.items():
save_path = os.path.join(save_folder, "{}.pth".format(model_name))
to_save = model.state_dict()
if model_name == 'encoder':
# save the sizes - these are needed at prediction time
to_save['height'] = self.opt.height
to_save['width'] = self.opt.width
to_save['use_stereo'] = self.opt.use_stereo
torch.save(to_save, save_path)
save_path = os.path.join(save_folder, "{}.pth".format("adam"))
torch.save(self.model_optimizer.state_dict(), save_path)
def load_model(self):
"""Load model(s) from disk
"""
self.opt.load_weights_folder = os.path.expanduser(self.opt.load_weights_folder)
assert os.path.isdir(self.opt.load_weights_folder), \
"Cannot find folder {}".format(self.opt.load_weights_folder)
print("loading model from folder {}".format(self.opt.load_weights_folder))
for n in self.opt.models_to_load:
print("Loading {} weights...".format(n))
path = os.path.join(self.opt.load_weights_folder, "{}.pth".format(n))
model_dict = self.models[n].state_dict()
pretrained_dict = torch.load(path)
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
self.models[n].load_state_dict(model_dict)
# loading adam state
optimizer_load_path = os.path.join(self.opt.load_weights_folder, "adam.pth")
if os.path.isfile(optimizer_load_path):
print("Loading Adam weights")
optimizer_dict = torch.load(optimizer_load_path)
self.model_optimizer.load_state_dict(optimizer_dict)
else:
print("Cannot find Adam weights so Adam is randomly initialized")