-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset_semi.py
445 lines (358 loc) · 16.2 KB
/
dataset_semi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import os
import sys
import torch.utils.data as data
import torch
from torchvision import transforms
from torch.autograd import Variable
import numpy as np
from PIL import Image
import torchvision.transforms.functional as TF
import random
import json
import copy
from bert.tokenization_bert import BertTokenizer
from torch.utils.data import DataLoader
from torch.utils.data.dataloader import default_collate
import h5py
from refer.refer import REFER
from args import get_parser
import transforms as T
from collections import namedtuple
SamMask = namedtuple("SamMask","mask")
def my_collate(batch):
elem = batch[0]
if isinstance(elem, tuple): # Some custom condition
sam_batch = []
normal_batch = []
for b in batch:
per_batch =[]
for e in b:
if isinstance(e,SamMask):
sam_batch.append(e)
else:
per_batch.append(e)
normal_batch.append(per_batch)
if sam_batch ==[]:
return default_collate(batch)
else:
return default_collate(normal_batch)+[sam_batch]
else: # Fall back to `default_collate`
return default_collate(batch)
def rle2mask(rle_dict):
height, width = rle_dict["size"]
mask = np.zeros(height * width, dtype=np.uint8)
rle_array = np.array(rle_dict["counts"])
starts = rle_array[0::2]
lengths = rle_array[1::2]
current_position = -1
for start, length in zip(starts, lengths):
# current_position += start
mask[start-1:start-1 + length] = 1
# current_position += length
mask = mask.reshape((height, width), order='F')
return mask
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
# 1. split the dataset
# 2. see the final json and check how to use in your dataset class
class ReferDataset_Semi(data.Dataset):
def __init__(self,
args,
image_transforms=None,
target_transforms=None,
split='train',
sup=True,label=True):
super(ReferDataset_Semi, self).__init__()
self.args = args
self.split = split
self.classes = []
self.image_transforms = image_transforms
self.target_transform = target_transforms
self.max_tokens = 20
# label = False
self.label = label
if sup == True :
if args.dataset!='refcocog':
refs_path = "./anns/{0}/{1}_{2}%_image.json".format(args.dataset,args.dataset,args.sup_percent)
else:
refs_path = "./anns/{0}/{1}/{2}_{3}%_image.json".format(args.dataset,args.splitBy,args.dataset,args.sup_percent)
stat_refs_list=json.load(open(refs_path, 'r'))
else:
if label == True:
percent = args.sup_percent
else:
percent = args.unsup_percent
if args.dataset!='refcocog':
refs_path = "./anns/{0}/{1}_{2}%_image.json".format(args.dataset,args.dataset,percent)
else:
refs_path = "./anns/{0}/{1}/{2}_{3}%_image.json".format(args.dataset,args.splitBy,args.dataset,percent)
stat_refs_list=json.load(open(refs_path, 'r'))
self.ques_list = []
splits=split.split('+')
self.refs_anno=[]
for split_ in splits:
self.refs_anno+= stat_refs_list[split_]
self.ref_ids = []
self.getImgIds = {}
for i in stat_refs_list['train']:
self.getImgIds[i['mask_id']]=i['iid']
self.ref_ids.append(i['mask_id'])
self.input_ids = []
self.attention_masks = []
self.tokenizer = BertTokenizer.from_pretrained(args.bert_tokenizer)
ref_ann = stat_refs_list['train']
for r in ref_ann:
ref = r['refs']
sentences_for_ref = []
attentions_for_ref = []
for i,(el) in enumerate(ref):
sentence_raw = el
attention_mask = [0] * self.max_tokens
padded_input_ids = [0] * self.max_tokens
input_ids = self.tokenizer.encode(text=sentence_raw, add_special_tokens=True)
# truncation of tokens
input_ids = input_ids[:self.max_tokens]
padded_input_ids[:len(input_ids)] = input_ids
attention_mask[:len(input_ids)] = [1]*len(input_ids)
sentences_for_ref.append(torch.tensor(padded_input_ids).unsqueeze(0))
attentions_for_ref.append(torch.tensor(attention_mask).unsqueeze(0))
self.input_ids.append(sentences_for_ref)
self.attention_masks.append(attentions_for_ref)
def get_classes(self):
return self.classes
def __len__(self):
return len(self.ref_ids)
def load_img_feats(self, idx):
img_path=None
if self.args.dataset in ['refcoco','refcoco+','refcocog']:
img_path=os.path.join("./refer/data/images/mscoco/images/train2014",'COCO_train2014_%012d.jpg'%self.refs_anno[idx]['iid'])
else:
assert NotImplementedError
img = Image.open(img_path).convert("RGB")
if self.args.dataset in ['refcoco','refcoco+','refcocog']:
if self.args.dataset !='refcocog':
mask=np.load(os.path.join("./anns/{0}/masks".format(self.args.dataset,self.args.dataset),'%d.npy'%self.refs_anno[idx]['mask_id']))
else:
split_by = self.args.splitBy
mask=np.load(os.path.join("./anns/{0}/{1}/masks".format(self.args.dataset,split_by,self.args.dataset),'%d.npy'%self.refs_anno[idx]['mask_id']))
else:
mask=np.zeros([img.shape[0],img.shape[1],1],dtype=np.float)
return img,mask
def __getitem__(self, index):
this_ref_id = self.ref_ids[index]
this_img_id = self.getImgIds[this_ref_id]
img, target = self.load_img_feats(index)
annot = np.zeros(target.shape)
annot[target == 1] = 1
annot = Image.fromarray(annot.astype(np.uint8), mode="P")
if self.image_transforms is not None and self.label== True:
# resize, from PIL to tensor, and mean and std normalization
img, target = self.image_transforms(img, annot)
elif self.image_transforms is not None and self.label==False:
weak_aug = self.image_transforms[0]
strong_aug = self.image_transforms[1]
img_w,target_w = weak_aug(img,annot)
img_s,target_s = strong_aug(img_w,target_w)
choice_sent = np.random.choice(len(self.input_ids[index]))
tensor_embeddings = self.input_ids[index][choice_sent]
attention_mask = self.attention_masks[index][choice_sent]
if self.label ==True:
return img, target, tensor_embeddings, attention_mask
else:
img,target = self.target_transform(img,annot)
return img,target,img_w,target_w,img_s,target_s,tensor_embeddings,attention_mask
class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
""" Dataloader that reuses workers
Uses same syntax as vanilla DataLoader
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
self.iterator = super().__iter__()
self.length=None
def __len__(self):
return len(self.batch_sampler.sampler) if self.length is None else max(len(self.batch_sampler.sampler),self.length)
def __iter__(self):
for i in range(len(self) if self.length is None else max(len(self),self.length)):
# while True:
yield next(self.iterator)
def set_length(self,length):
self.length=length
class _RepeatSampler(object):
""" Sampler that repeats forever
Args:
sampler (Sampler)
"""
def __init__(self, sampler):
self.sampler = sampler
def __iter__(self):
while True:
yield from iter(self.sampler)
class ReferSAMOfflineRleDataset(data.Dataset):
def __init__(self,
args,
image_transforms=None,
target_transforms=None,
split='train',
sup=True,label=True):
super(ReferSAMOfflineRleDataset, self).__init__()
self.args = args
self.split = split
self.classes = []
self.image_transforms = image_transforms
self.target_transform = target_transforms
self.max_tokens = 20
# label = False
self.label = label
if sup == True :
if args.dataset!='refcocog':
refs_path = "./anns/{0}/{1}_{2}%_image.json".format(args.dataset,args.dataset,args.sup_percent)
else:
refs_path = "./anns/{0}/{1}/{2}_{3}%_image.json".format(args.dataset,args.splitBy,args.dataset,args.sup_percent)
stat_refs_list=json.load(open(refs_path, 'r'))
else:
if label == True:
percent = args.sup_percent
else:
percent = args.unsup_percent
if args.dataset!='refcocog':
refs_path = "./anns/{0}/{1}_{2}%_image.json".format(args.dataset,args.dataset,percent)
else:
refs_path = "./anns/{0}/{1}/{2}_{3}%_image.json".format(args.dataset,args.splitBy,args.dataset,percent)
stat_refs_list=json.load(open(refs_path, 'r'))
self.ques_list = []
splits=split.split('+')
self.refs_anno=[]
for split_ in splits:
self.refs_anno+= stat_refs_list[split_]
self.ref_ids = []
self.getImgIds = {}
for i in stat_refs_list['train']:
self.getImgIds[i['mask_id']]=i['iid']
self.ref_ids.append(i['mask_id'])
self.input_ids = []
self.attention_masks = []
self.tokenizer = BertTokenizer.from_pretrained(args.bert_tokenizer)
ref_ann = stat_refs_list['train']
for r in ref_ann:
ref = r['refs']
sentences_for_ref = []
attentions_for_ref = []
for i,(el) in enumerate(ref):
sentence_raw = el
attention_mask = [0] * self.max_tokens
padded_input_ids = [0] * self.max_tokens
input_ids = self.tokenizer.encode(text=sentence_raw, add_special_tokens=True)
# truncation of tokens
input_ids = input_ids[:self.max_tokens]
padded_input_ids[:len(input_ids)] = input_ids
attention_mask[:len(input_ids)] = [1]*len(input_ids)
sentences_for_ref.append(torch.tensor(padded_input_ids).unsqueeze(0))
attentions_for_ref.append(torch.tensor(attention_mask).unsqueeze(0))
self.input_ids.append(sentences_for_ref)
self.attention_masks.append(attentions_for_ref)
def get_classes(self):
return self.classes
def __len__(self):
return len(self.ref_ids)
def load_img_feats(self, idx):
img_path=None
if self.args.dataset in ['refcoco','refcoco+','refcocog']:
img_path=os.path.join("./refer/data/images/mscoco/images/train2014",'COCO_train2014_%012d.jpg'%self.refs_anno[idx]['iid'])
else:
assert NotImplementedError
img = Image.open(img_path).convert("RGB")
if self.args.dataset in ['refcoco','refcoco+','refcocog']:
if self.args.dataset !='refcocog':
mask=np.load(os.path.join("./anns/{0}/masks".format(self.args.dataset),'%d.npy'%self.refs_anno[idx]['mask_id']))
else:
split_by = self.args.splitBy
mask=np.load(os.path.join("./anns/{0}/{1}/masks".format(self.args.dataset,split_by),'%d.npy'%self.refs_anno[idx]['mask_id']))
else:
mask=np.zeros([img.shape[0],img.shape[1],1],dtype=np.float)
return img,mask
def __getitem__(self, index):
this_ref_id = self.ref_ids[index]
this_img_id = self.getImgIds[this_ref_id]
img, target = self.load_img_feats(index)
mask_id = self.refs_anno[index]['mask_id']
if self.args.dataset!='refcocog':
sam_rle_mask = json.load(open('./anns/{0}/sam_rle_mask/{1}.json'.format(self.args.dataset,mask_id)))
else:
sam_rle_mask = json.load(open('./anns/{0}/{1}/sam_rle_mask/{2}.json'.format(self.args.dataset,self.args.splitBy,mask_id)))
N = len(sam_rle_mask)
H,W = sam_rle_mask[0]['size']
sam_masks = np.zeros((N,H,W),dtype=np.uint8)
for k in range(N):
sam_masks[k] = rle2mask(sam_rle_mask[k])
sam_mask = torch.nn.functional.interpolate(torch.tensor(sam_masks)[None,:,:,:],size=(self.args.img_size,self.args.img_size),mode='nearest').numpy()[0,:,:,:]
h,w = target.shape
annot = np.zeros(target.shape)
annot[target == 1] = 1
annot = Image.fromarray(annot.astype(np.uint8), mode="P")
if self.image_transforms is not None and self.label== True:
# resize, from PIL to tensor, and mean and std normalization
img, target = self.image_transforms(img, annot)
elif self.image_transforms is not None and self.label==False:
weak_aug = self.image_transforms[0]
strong_aug = self.image_transforms[1]
img_w,target_w,sam_mask = weak_aug(img,annot,point=None,sam_mask=sam_mask)
img_s,target_s = strong_aug(img_w,target_w)
choice_sent = np.random.choice(len(self.input_ids[index]))
tensor_embeddings = self.input_ids[index][choice_sent]
attention_mask = self.attention_masks[index][choice_sent]
if self.label ==True:
return img, target, tensor_embeddings, attention_mask
else:
img,target = self.target_transform(img,annot)
return img,target,img_w,target_w,img_s,target_s,tensor_embeddings,attention_mask,SamMask(mask=sam_mask)
def loader(args,dataset: torch.utils.data.Dataset, rank: int,num_replicas, shuffle,drop_last=False):
dist_sampler = torch.utils.data.distributed.DistributedSampler(dataset,
num_replicas=num_replicas,
shuffle=True,
rank=rank)
g = torch.Generator()
g.manual_seed(args.seed)
data_loader = InfiniteDataLoader(dataset,
batch_size=args.batch_size,
shuffle=shuffle,
sampler=dist_sampler,
num_workers=0,
pin_memory=False,
drop_last=drop_last,
worker_init_fn=seed_worker,
generator=g,
collate_fn=my_collate)
return data_loader
def get_transform(args):
transforms = [T.Resize(args.img_size, args.img_size),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
]
return T.Compose(transforms)
if __name__ == '__main__':
parser = get_parser()
args = parser.parse_args()
args.sup_percent = 1
args.unsup_percent= 99
dataset = ReferDataset_Semi(args,split='train',image_transforms=get_transform(args))
g = torch.Generator()
g.manual_seed(args.seed)
data_loader = InfiniteDataLoader(dataset,
batch_size=10,
shuffle=True,
pin_memory=True,
worker_init_fn=seed_worker,
generator=g)
for _,ref_iter,image_iter, mask_iter in data_loader:
print("1")
# print(image_iter.size())
# print(mask_iter.size())
# print(box_iter.size())
# print(ref_iter.size())
# # cv2.imwrite('./test.jpg', image_iter.numpy()[0].transpose((1, 2, 0))*255)
# # cv2.imwrite('./mask.jpg', mask_iter.numpy()[0].transpose((1, 2, 0))*255)
# print(info_iter.size())
# print(info_iter)