-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanm.py
343 lines (249 loc) · 7.11 KB
/
anm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import math
from functools import lru_cache
import matplotlib.pyplot as plt
import csv
import webbrowser
import os
class primeFactorsObject():
def __init__(self):
self.largest_factor = 0
self.smallest_factor = math.inf
self.num_factors = 0
self.unique_factors = set()
self.prime_factors = {}
self.number = 1
def add_factor(self, x):
if x not in self.prime_factors:
self.prime_factors[x] = 1
else:
self.prime_factors[x] += 1
self.num_factors += 1
if x < self.smallest_factor:
self.smallest_factor = x
if x > self.largest_factor:
self.largest_factor = x
self.number *= x
self.unique_factors.add(x)
def remove_factor(self, x):
if x in self.prime_factors:
if self.prime_factors[x] == 1:
del self.prime_factors[x]
else:
self.prime_factors[x] -= 1
else:
return
if x not in self.prime_factors:
self.unique_factors.remove(x)
self.num_factors -= 1
if self.num_factors == 0:
return
pF = list(self.prime_factors)
if x == self.smallest_factor:
self.smallest_factor = min(pF)
if x == self.largest_factor:
self.largest_factor = max(pF)
self.number = int(self.number / x)
def print_info(self):
print("Prime factors of ", self.number, " are ")
for k, v in self.prime_factors.items():
print(' ', k, ' with exponent ', v)
print()
# uncomment lru_cache code line if factorial is going to be used
# multiple times with posiibly same input
# @lru_cache(maxsize=64)
def factorial(n):
f = 1
for i in range(n):
f *= (i + 1)
return f
@lru_cache(maxsize=1024)
def primeFactorization(n):
prime_factors = []
while n % 2 == 0:
prime_factors.append(2)
n >>= 1
for i in range(3, int(math.sqrt(n)) + 1, 2):
while n % i == 0:
prime_factors.append(i)
n /= i
if n > 2:
prime_factors.append(n)
return prime_factors
@lru_cache(maxsize=1024)
def primeFactorization_condensed(n):
prime_factors = primeFactorsObject()
while n % 2 == 0:
prime_factors.add_factor(2)
n >>= 1
for i in range(3, int(math.sqrt(n)) + 1, 2):
while n % i == 0:
prime_factors.add_factor(i)
n /= i
if n > 2:
prime_factors.add_factor(n)
return prime_factors
@lru_cache(maxsize=256)
def Moebius(n):
if n <= 1:
return n
pF = primeFactorization(n)
if len(set(pF)) == len(pF):
return (-1)**len(pF)
return 0
def something(n):
summation = 0
rl = [i + 1 for i in range(int(math.sqrt(n)))]
for i in rl:
d = i + 1
if n % (d * d) == 0:
summation += Moebius(d)
return summation
# returns true if a number is squarefull
def is_a_squarefull_number(n):
pF = primeFactorization_condensed(n)
for k, v in pF:
if v < 2:
return False
return True
# returns true if a number is squarefree
def is_a_squarefree_number(n):
pF = primeFactorization_condensed(n)
for k, v in pF:
if v >= 2:
return False
return True
def testing_fn():
for i in range(1000):
x = something(i)
if (x != 0):
pf = primeFactorization(i)
print("f(" + str(i) + ") = ", x, "with prime factors ",
pf, "and u(" + str(i) + ") = ", Moebius(i))
sqs = [i for i in [4, 16, 25, 75, 48]]
for i in sqs:
print(something(i))
def EulerPhi(n):
unique_pF = set(primeFactorization(n))
prod = n
for i in unique_pF:
prod *= ((i - 1) / (i))
return int(prod)
def visualize():
fs = []
factor = 9
for num in range(0, factor * 100):
temp = something(num)
fs.append(temp)
# print(strs)
# draw fs
plt.figure(figsize=(15, 5))
plt.title('Plot')
plt.xlabel('Index')
plt.ylabel('u^2(n)')
temp = str(factor) + '11'
sp = int(temp)
for i in range(factor):
plt.subplot(sp)
plt.stem([j + 1 + (len(fs) // factor) * i for j in range(len(fs) // factor)],
fs[len(fs) // factor * i: (len(fs) // factor) * (i + 1)])
sp += 1
plt.show()
def desmos():
# data = [Moebius(i) for i in range(1, 1000)]
data = [-1 * Moebius(int((2**(i - 1))**2)) for i in range(0, 10)]
with open('to_plot12.txt', 'w') as csvfile:
writer = csv.writer(csvfile)
writer.writerow(data)
csvfile.close()
webbrowser.open('file://' + os.path.realpath('parabola.html'))
# deprecated function, too slow
# def EulerPhi_old(n):
# summation = 0
# for i in range(n):
# m = i + 1
# summation += 1 if math.gcd(m, n) == 1 else 0
# return summation
# invEP_list = set()
# for i in range(20):
# x = i + 1
# invEP = 1 / EulerPhi(x)
# invEP_list.add(invEP)
# print("InvEulerPhi(" + str(x) + ") = ", invEP)
def char_fn_squarefree(n):
if is_a_squarefree_number(n):
return 1
return 0
def num_sqfull_lessthanx(x):
sqfull = 0
num = x
for i in range(num):
if is_a_squarefull_number(i + 1):
sqfull += 1
# print("Number of squarefull numbers less than ", num, " is ", sqfull)
return sqfull
def b(num):
s = 0
for b in range(1, int(num**(1 / 3))):
if is_a_squarefree_number(b):
temp = char_fn_squarefree(b)
# if temp == 1:
# print(b, end=' \n')
s += temp
# print("Summation of u^2(squarefree numbers less than ",
# int(num**(1 / 3)) + 1, ") is ", s)
return s
# desmos()
# def main_ans(x, a):
# # odd numbers less than x/a
# count = 0
# for i in range(0, (x // a) + 1):
# even = i % 2 == 0
# if not even:
# # print(i, end=' ')
# count += 1
# # print(" count is ", count)
# return count
# def check(x, a):
# # print(' and ', (x + a) // (2 * a))
# # return (x + a) // (2 * a)
# return (x // a - 1) // 2 + 1
# val = True
# for a in range(3, 100):
# for x in range(1, 125):
# if (x < a):
# continue
# else:
# val &= main_ans(x, a) == check(x, a)
# print(val)
def omega(n):
return len(primeFactorization_condensed(n).unique_factors)
def special_omega(n):
return 2 ** omega(n)
def d(n):
count = 0
for i in range(1, n + 1):
if n % i == 0:
count += 1
return count
def d_alt(n):
p = 1
x = primeFactorization_condensed(n).prime_factors
for k, v in x.items():
p *= (v + 1)
return p
# main_ans(10, 3)
def sum_of_div(n):
p = 1
x = primeFactorization_condensed(n).prime_factors
for k, v in x.items():
p *= ((-1 / (k**(v))) + k) / (k - 1)
return p
def perfect_number(p):
# if p not prime, throw and error
return (2**(p - 1)) * ((2**p) - 1)
# desmos()
num = [2, 3, 5, 7, 11, 13, 17, 19]
for i in num:
print(perfect_number(i))
# print(d_alt())
print(sum_of_div(num))