-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
29 lines (25 loc) · 1.12 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from track import Track
from utils.utils import *
import sys
import os
import numpy as np
def main():
track = Track()
opt = track.opt
ext_delegate = None
if opt.ext_delegate:
if os.path.isfile('/usr/lib/libvx_delegate.so'):
ext_delegate = [tflite.load_delegate('/usr/lib/libvx_delegate.so')]
print(f'loaded {ext_delegate}')
try:
interpreter = load_model('weight/ssd_mobilenet_v1_1_default_1.tflite',experimental_delegates=opt.ext_delegate,num_threads=opt.num_threads)
# reidInterpreter = tflite.Interpreter(model_path = 'weight/model_light_reid_dynamic_int8_version2.tflite',num_threads=opt.num_threads,experimental_delegates=ext_delegate)
except (ValueError, NameError) as e:
sys.stderr.write(f" Unable to find \n{e}")
interpreter.allocate_tensors()
floating_model = interpreter.get_input_details()[0]['dtype'] == np.float32
_, HEIGHT, WIDTH, _ = interpreter.get_input_details()[0]['shape']
print(f"Height and Weight accepted by the model:{HEIGHT,WIDTH}")
track.infer_video(interpreter,(HEIGHT, WIDTH))
if __name__ == "__main__":
main()