forked from yjh0410/RT-ODLab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
219 lines (186 loc) · 9.06 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from __future__ import division
import os
import random
import numpy as np
import argparse
from copy import deepcopy
# ----------------- Torch Components -----------------
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
# ----------------- Extra Components -----------------
from utils import distributed_utils
from utils.misc import compute_flops
# ----------------- Config Components -----------------
from config import build_dataset_config, build_model_config, build_trans_config
# ----------------- Model Components -----------------
from models.detectors import build_model
# ----------------- Train Components -----------------
from engine import build_trainer
def parse_args():
parser = argparse.ArgumentParser(description='Real-time Object Detection LAB')
# Random seed
parser.add_argument('--seed', default=42, type=int)
# GPU
parser.add_argument('--cuda', action='store_true', default=False,
help='use cuda.')
# Image size
parser.add_argument('-size', '--img_size', default=640, type=int,
help='input image size')
parser.add_argument('--eval_first', action='store_true', default=False,
help='evaluate model before training.')
# Outputs
parser.add_argument('--tfboard', action='store_true', default=False,
help='use tensorboard')
parser.add_argument('--save_folder', default='weights/', type=str,
help='path to save weight')
parser.add_argument('--vis_tgt', action="store_true", default=False,
help="visualize training data.")
parser.add_argument('--vis_aux_loss', action="store_true", default=False,
help="visualize aux loss.")
# Mixing precision
parser.add_argument('--fp16', dest="fp16", action="store_true", default=False,
help="Adopting mix precision training.")
# Batchsize
parser.add_argument('-bs', '--batch_size', default=16, type=int,
help='batch size on all the GPUs.')
# Epoch
parser.add_argument('--max_epoch', default=150, type=int,
help='max epoch.')
parser.add_argument('--wp_epoch', default=1, type=int,
help='warmup epoch.')
parser.add_argument('--eval_epoch', default=10, type=int,
help='after eval epoch, the model is evaluated on val dataset.')
parser.add_argument('--no_aug_epoch', default=20, type=int,
help='cancel strong augmentation.')
# Model
parser.add_argument('-m', '--model', default='yolov1', type=str,
help='build yolo')
parser.add_argument('-ct', '--conf_thresh', default=0.001, type=float,
help='confidence threshold')
parser.add_argument('-nt', '--nms_thresh', default=0.7, type=float,
help='NMS threshold')
parser.add_argument('--topk', default=1000, type=int,
help='topk candidates dets of each level before NMS')
parser.add_argument('-p', '--pretrained', default=None, type=str,
help='load pretrained weight')
parser.add_argument('-r', '--resume', default=None, type=str,
help='keep training')
parser.add_argument('--no_multi_labels', action='store_true', default=False,
help='Perform NMS operations regardless of category.')
parser.add_argument('--nms_class_agnostic', action='store_true', default=False,
help='Perform NMS operations regardless of category.')
# Dataset
parser.add_argument('--root', default='/Users/liuhaoran/Desktop/python_work/object-detection/dataset/',
help='data root')
parser.add_argument('-d', '--dataset', default='coco',
help='coco, voc, widerface, crowdhuman')
parser.add_argument('--load_cache', action='store_true', default=False,
help='Path to the cached data.')
parser.add_argument('--num_workers', default=4, type=int,
help='Number of workers used in dataloading')
# Train trick
parser.add_argument('-ms', '--multi_scale', action='store_true', default=False,
help='Multi scale')
parser.add_argument('--ema', action='store_true', default=False,
help='Model EMA')
parser.add_argument('--min_box_size', default=8.0, type=float,
help='min size of target bounding box.')
parser.add_argument('--mosaic', default=None, type=float,
help='mosaic augmentation.')
parser.add_argument('--mixup', default=None, type=float,
help='mixup augmentation.')
parser.add_argument('--grad_accumulate', default=1, type=int,
help='gradient accumulation')
# DDP train
parser.add_argument('-dist', '--distributed', action='store_true', default=False,
help='distributed training')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--sybn', action='store_true', default=False,
help='use sybn.')
parser.add_argument('--find_unused_parameters', default=False, type=bool,
help='set find_unused_parameters as True.')
# Debug mode
parser.add_argument('--debug', action='store_true', default=False,
help='debug mode.')
return parser.parse_args()
def fix_random_seed(args):
seed = args.seed + distributed_utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
def train():
args = parse_args()
print("Setting Arguments.. : ", args)
print("----------------------------------------------------------")
# ---------------------------- Build DDP ----------------------------
local_rank = local_process_rank = -1
if args.distributed:
distributed_utils.init_distributed_mode(args)
print("git:\n {}\n".format(distributed_utils.get_sha()))
try:
# Multiple Mechine & Multiple GPUs (world size > 8)
local_rank = torch.distributed.get_rank()
local_process_rank = int(os.getenv('LOCAL_PROCESS_RANK', '0'))
except:
# Single Mechine & Multiple GPUs (world size <= 8)
local_rank = local_process_rank = torch.distributed.get_rank()
world_size = distributed_utils.get_world_size()
print("LOCAL RANK: ", local_rank)
print("LOCAL_PROCESS_RANL: ", local_process_rank)
print('WORLD SIZE: {}'.format(world_size))
# ---------------------------- Build CUDA ----------------------------
if args.cuda and torch.cuda.is_available():
print('use cuda')
device = torch.device("cuda")
else:
device = torch.device("cpu")
# ---------------------------- Fix random seed ----------------------------
fix_random_seed(args)
# ---------------------------- Build config ----------------------------
data_cfg = build_dataset_config(args)
model_cfg = build_model_config(args)
trans_cfg = build_trans_config(model_cfg['trans_type'])
# ---------------------------- Build model ----------------------------
## Build model
model, criterion = build_model(args, model_cfg, device, data_cfg['num_classes'], True)
model = model.to(device).train()
model_without_ddp = model
if args.distributed:
model = DDP(model, device_ids=[args.gpu], find_unused_parameters=args.find_unused_parameters)
if args.sybn:
print('use SyncBatchNorm ...')
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model_without_ddp = model.module
## Calcute Params & GFLOPs
if distributed_utils.is_main_process:
model_copy = deepcopy(model_without_ddp)
model_copy.trainable = False
model_copy.eval()
compute_flops(model=model_copy,
img_size=args.img_size,
device=device)
del model_copy
if args.distributed:
dist.barrier()
# ---------------------------- Build Trainer ----------------------------
trainer = build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model_without_ddp, criterion, world_size)
# --------------------------------- Train: Start ---------------------------------
## Eval before training
if args.eval_first and distributed_utils.is_main_process():
# to check whether the evaluator can work
model_eval = model_without_ddp
trainer.eval(model_eval)
return
## Satrt Training
trainer.train(model)
# --------------------------------- Train: End ---------------------------------
# Empty cache after train loop
del trainer
if args.cuda:
torch.cuda.empty_cache()
if __name__ == '__main__':
train()