-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsingle_path.m
79 lines (67 loc) · 2.26 KB
/
single_path.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
% Simulation of a single cell
close all
import forward.modParameters forward.getInitialData ...
forward.compPathsVectorized
%% setup deterministic and stochastic parameters
P = modParameters();
P.preDistribute = 120;
sigma = zeros(102,2);
%% select from the five stochastic blockmodels degradation, endosomal
%% internalization, receptor-ligand and synthesis
model = 'internalization';
%% set options
% dose of TGFb (0: 0 pM, 1: 1 pM, 2: 2.5 pM, 3: 5 pM, 4: 25 pM,
% 5: 100 pM, 6: 2 x 5 pM)
dose = 5;
% remove negative paths
remNeg = true;
% fix seed (or not)
sameSeed = false;
% compute objective function
obj_function = true;
% add control paths
controls = true;
% time increment (mins)
dt = 0.6;
% final time (mins)
T = 1440;
%% model setup
switch model
case 'degradation'
stoch_comp = [66; 67; 70];
sigma(stoch_comp,1) = [1.58e-6; 2.04e-1; 1.92e-2];
sigma(stoch_comp,2) = [ 6.76e-5; 9.23e-2; 7.90e-4];
P.kdeg_R1 = 3.13e-3; P.kdeg_R2 = 1.01e-6; P.kdeg_S7 = 1.77e-3;
case 'endosomal'
stoch_comp = 59;
sigma(stoch_comp,1) = [2.50e-1];
sigma(stoch_comp,2) = [1.49e-2];
P.k_disso_Active_Rec = 1.00e-2;
case 'internalization'
stoch_comp = [37; 60; 61];
sigma(stoch_comp,1) = [3.14e-2; 4.70e-2; 8.37e-2];
sigma(stoch_comp,2) = [7.34e-3; 4.07e-3; 1.60e-2];
P.index_active_Rec_internalize = 8.12e-1; P.k_in_1 = 3.78e-1; P.k_in_2 = 3.55e-1;
case 'receptor-ligand'
stoch_comp = [71; 72];
sigma(stoch_comp,1) = [1.13e-1; 1.54e-2];
sigma(stoch_comp,2) = [3.33e-3; 5.37e-7];
P.kf_R1_activation = 4.874; P.kf_R2_activation = 5.885;
case 'synthesis'
stoch_comp = [26; 27; 78];
sigma(stoch_comp,1) = [1.61e-8; 7.52e-7; 6.28e-5];
sigma(stoch_comp,2) = [7.00e-15; 9.10e-11; 9.37e-6];
P.R1_total = 27.364; P.R2_total = 33.614; P.mRNA_prod = 1.21e-3;
otherwise
error('The stochastic model %s is not defined!', model);
end
%% simulation
[compPaths] = compPathsVectorized(1, P, sigma, dose, remNeg, sameSeed, ...
dt, T);
%% visualisation
figure()
[t, smad2] = compPaths.getPrepData(controls);
plot(t/60, smad2);
xlim([0, 24]);
xlabel('time (h)');
ylabel('nuc/cyt SMAD2')