Swin Transformer V2: Scaling Up Capacity and Resolution, arxiv
PaddlePaddle training/validation code and pretrained models for Swin Transformer V2.
The official pytorch implementation is here.
This implementation is developed by PaddleViT.
- Update (2021-11-27): Complete the modification of WindowAttention module according to the original paper
- post-norm configuration
- scaled cosine attention
- log-spaced continuous relative position bias
The code modification explanation is here
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
swin_b_224 | 88.9M | 15.3G | 224 | 0.9 | Log-CPB | coming soon |
*The results are evaluated on ImageNet2012 validation set.
- Python>=3.6
- yaml>=0.2.5
- PaddlePaddle>=2.1.0
- yacs>=0.1.8
ImageNet2012 dataset is used in the following folder structure:
│imagenet/
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── ILSVRC2012_val_00000293.JPEG
│ ├── ILSVRC2012_val_00002138.JPEG
│ ├── ......
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume the downloaded weight file is stored in ./swin_base_patch4_window7_224.pdparams
, to use the swin_base_patch4_window7_224
model in python:
from config import get_config
from swin import build_swin as build_model
# config files in ./configs/
config = get_config('./configs/swinv2_base_patch4_window7_224.yaml')
# build model
model = build_model(config)
# load pretrained weights, .pdparams is NOT needed
model_state_dict = paddle.load('./swinv2_base_patch4_window7_224')
model.set_dict(model_state_dict)
To evaluate Swin Transformer model performance on ImageNet2012 with a single GPU, run the following script using command line:
sh run_eval.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg='./configs/swinv2_base_patch4_window7_224.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./swinv2_base_patch4_window7_224'
Run evaluation using multi-GPUs:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg='./configs/swinv2_base_patch4_window7_224.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./swinv2_base_patch4_window7_224'
To train the Swin Transformer model on ImageNet2012 with single GPU, run the following script using command line:
sh run_train.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_singel_gpu.py \
-cfg='./configs/swinv2_base_patch4_window7_224.yaml' \
-dataset='imagenet2012' \
-batch_size=32 \
-data_path='/dataset/imagenet' \
Run training using multi-GPUs:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg='./configs/swinv2_base_patch4_window7_224.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
@article{liu2021swin,
title={Swin Transformer V2: Scaling Up Capacity and Resolution},
author={Liu, Ze and Hu, Han and Lin, Yutong and Yao, Zhuliang and Xie, Zhenda and Wei, Yixuan and Ning, Jia and Cao, Yue and Zhang, Zheng and Dong, Li and others},
journal={arXiv preprint arXiv:2111.09883},
year={2021}
}