-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
35 lines (28 loc) · 1.23 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import numpy as np
import os
import time
from keras import layers
from keras import models
from keras import optimizers
from fitsbook.callbacks import FitsbookCallback
from keras.callbacks import LambdaCallback
def main():
# Simple model to test API
model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(1,)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(1))
model.compile(
loss='mean_squared_error',
# optimizer=optimizers.RMSprop(lr=1e-3),
optimizer='rmsprop',
metrics=['mean_absolute_error', 'mean_squared_error']
)
# print(model.optimizer.__class__.__name__)
fahrenheit=np.array([-140,-136,-124,-112,-105,-96,-88,-75,-63,-60,-58,-40,-20,-10,0,30,35,48,55,69,81,89,95,99,105,110,120,135,145,158,160],dtype=float)
celsius=np.array([-95.55,-93.33,-86.66,-80,-76.11,-71.11,-66.66,-59.44,-52.77,-51.11,-50,-40,-28.88,-23.33,-17.77,-1.11,1.66,8.88,12,20,27.22,31.66,35,37.22,40.55,43.33,48.88,57.22,62.77,70,71.11],dtype=float)
lambda_cb = LambdaCallback(on_epoch_begin=lambda x, y: time.sleep(3.5))
model.fit(fahrenheit, celsius, epochs=10, callbacks=[lambda_cb, FitsbookCallback()])
if __name__ == '__main__':
os.environ['PY_ENV'] = 'DEV'
main()