-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune.py
210 lines (200 loc) · 6.19 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import wandb
import torch
import argparse
import pandas as pd
from datetime import datetime
import pytorch_lightning as pl
from torch.utils.data import DataLoader
from pytorch_lightning.callbacks import ModelCheckpoint
from models.masked_control_point_e import MaskedControlPointE
from datasets.masked_control_shapenet import (
SOURCE_UID,
TARGET_UID,
masked_labels_path,
MaskedControlShapeNet,
)
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
torch.set_float32_matmul_precision("high")
os.environ["WANDB_API_KEY"] = "7b14a62f11dc360ce036cf59b53df0c12cd87f5a"
OUTPUTS_DIR = "/scratch/noam/3d_local_edit/outputs"
DATASETS_DIR = "/home/noamatia/repos/point-e/datasets/data/shapetalk"
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--data_csv",
type=str,
default="a_chair_with_armrests/train.csv",
help="The trainning data csv.",
)
parser.add_argument(
"--data_csv_val",
type=str,
# default="a_chair_with_armrests/test.csv",
help="The validation data csv. If not provided, the training data will be used.",
)
parser.add_argument(
"--num_validation_samples",
type=int,
default=1,
help="The number of validation samples",
)
parser.add_argument(
"--validation_freq",
type=int,
default=10,
help="The validation frequency for testing the model on the validation dataset.",
)
parser.add_argument(
"--epochs",
type=int,
default=10000,
help="The number of epochs. Each epoch is a full pass over the trainning dataset.",
)
parser.add_argument(
"--batch_size",
type=int,
default=6,
help="The batch size for training, using gradient accumulation.",
)
parser.add_argument(
"--grad_acc_steps",
type=int,
default=11,
help="The grad accumolation steps, the number of batches to accumulate before taking a step.",
)
parser.add_argument(
"--lr",
type=float,
default=0.0002,
help="The learning rate for the model training.",
)
parser.add_argument(
"--cond_drop_prob",
type=float,
default=0.5,
help="The conditional dropout probability, the probability to ignore the prompt.",
)
parser.add_argument(
"--timesteps",
type=int,
default=1024,
help="The timesteps for the diffusion model.",
)
parser.add_argument(
"--num_points",
type=int,
default=1024,
help="The number of points in the point clouds.",
)
parser.add_argument(
"--subset_size",
type=int,
default=1,
help="The subset size of the dataset, if not set, the full dataset will be used.",
)
parser.add_argument(
"--beta",
type=float,
default=0.75,
help="The beta value for the regularization term.",
)
parser.add_argument(
"--target_mask",
type=bool,
default=True,
help="Whether to use the target ot the source mask in the dataset.",
)
parser.add_argument(
"--part",
type=str,
default="chair_arm",
help="The part name to use for PartNet.",
)
parser.add_argument(
"--utterance_key",
type=str,
default="utterance",
choices=["utterance", "llama3_uttarance"],
help="The utterance key in the dataset.",
)
parser.add_argument(
"--wandb_project",
type=str,
default="MaskedControlPointE",
help="Wandb project name to use.",
)
args = parser.parse_args()
return args
def load_df(data_csv):
df = pd.read_csv(os.path.join(DATASETS_DIR, data_csv))
for uid_key in [SOURCE_UID, TARGET_UID]:
df = df[
df.apply(
lambda row: os.path.exists(masked_labels_path(row[uid_key])),
axis=1,
)
]
return df
def main(args, name):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
df = load_df(args.data_csv)
train_dataset = MaskedControlShapeNet(
df=df,
part=args.part,
device=device,
num_points=args.num_points,
batch_size=args.batch_size,
subset_size=args.subset_size,
target_mask=args.target_mask,
utterance_key=args.utterance_key,
)
train_data_loader = DataLoader(
dataset=train_dataset, batch_size=args.batch_size, shuffle=True
)
validation_df = load_df(args.data_csv_val) if args.data_csv_val else df
validation_dataset = MaskedControlShapeNet(
device=device,
part=args.part,
df=validation_df,
num_points=args.num_points,
target_mask=args.target_mask,
utterance_key=args.utterance_key,
batch_size=args.num_validation_samples,
subset_size=args.num_validation_samples,
)
validation_data_loader = DataLoader(
dataset=validation_dataset, batch_size=args.num_validation_samples
)
wandb.init(project=args.wandb_project, name=name, config=vars(args))
model = MaskedControlPointE(
lr=args.lr,
dev=device,
beta=args.beta,
timesteps=args.timesteps,
num_points=args.num_points,
batch_size=args.batch_size,
cond_drop_prob=args.cond_drop_prob,
validation_data_loader=validation_data_loader,
)
wandb.watch(model)
checkpoint_callback = ModelCheckpoint(
dirpath=os.path.join(OUTPUTS_DIR, name),
save_top_k=-1,
every_n_epochs=args.epochs / 10,
save_weights_only=True,
)
trainer = pl.Trainer(
max_epochs=args.epochs,
callbacks=[checkpoint_callback],
accumulate_grad_batches=args.grad_acc_steps,
check_val_every_n_epoch=args.validation_freq,
)
trainer.fit(model, train_data_loader, validation_data_loader)
wandb.finish()
if __name__ == "__main__":
args = parse_args()
date_str = datetime.now().strftime("%m_%d_%Y_%H_%M_%S")
subset_size = "full" if args.subset_size is None else args.subset_size
name = f"{date_str}_{subset_size}_{args.part}_{args.beta}_{args.target_mask}_{args.utterance_key}"
main(args, name)