-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathformation_distance.py
133 lines (103 loc) · 3.92 KB
/
formation_distance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import numpy as np
from scipy import linalg as la
# The symbols are taken from the PhD Thesis "Distributed formation control for autonomous robots" University of Groningen.
class formation_distance:
def __init__(self, m, l, d, mu, tilde_mu, B, c_shape, c_vel):
self.m = m # Dimension {2,3}
self.l = l # Order of the Lyapunov function (1,2,...)
self.d = d # Set of desired distances (linked to the set of edges)
self.mu = mu # Set of mismatches
self.tilde_mu = tilde_mu # Set of mismatches
self.B = B # Incidence matrix
self.agents, self.edges = self.B.shape
self.S1 = self.make_S1() # Aux matrix
self.S2 = self.make_S2() # Aux matrix
self.Av = self.make_Av() # Matrix A for eventual velocities
self.Aa = self.Av.dot(self.B.T).dot(self.Av) # Matrix A for eventual acceleration
# Kronecker products
self.Bb = la.kron(self.B, np.eye(self.m))
self.S1b = la.kron(self.S1, np.eye(self.m))
self.S2b = la.kron(self.S2, np.eye(self.m))
self.Avb = la.kron(self.Av, np.eye(self.m))
self.Aab = la.kron(self.Aa, np.eye(self.m))
# Distance error vector
self.Ed = np.zeros(self.edges)
# Velocity error vector
self.Ev = np.zeros(self.edges*self.m)
# Gain controllers
self.c_shape = c_shape
self.c_vel = c_vel
# Desired acceleration given \ddot p = u
def u_acc(self, X, V):
Z = self.Bb.T.dot(X)
Dz = self.make_Dz(Z)
Dzt = self.make_Dzt(Z)
self.Ed = self.make_E(Z)
U = -self.c_shape*self.Bb.dot(Dz).dot(Dzt).dot(self.Ed) + \
self.c_vel*self.Avb.dot(Z) + self.Aab.dot(Z) \
- self.c_vel*V
return U
# Desired velocities given \dot p = u
def u_vel(self, X):
Z = self.Bb.T.dot(X)
Dz = self.make_Dz(Z)
Dzt = self.make_Dzt(Z)
self.Ed = self.make_E(Z)
U = -self.c_shape*self.Bb.dot(Dz).dot(Dzt).dot(self.Ed) \
+ self.Avb.dot(Z)
return U
# Construct S1 from B
def make_S1(self):
S1 = np.zeros_like(self.B)
for i in range(0, self.agents):
for j in range(0, self.edges):
if self.B[i,j] == 1:
S1[i,j] = 1
return S1
# Construct S2 from B
def make_S2(self):
S2 = np.zeros_like(-self.B)
for i in range(0, self.agents):
for j in range(0, self.edges):
if self.B[i,j] == 1:
S2[i,j] = 1
return S2
# Incidence matrix Bd given the first agent is a leader
def make_Bd(self):
Bd = np.copy(self.B)
for i in range(0, self.edges):
Bd[0, i] = 0
return Bd
# Diagonal matrix spliting the z elements of Z
def make_Dz(self, Z):
Dz = np.zeros((Z.size, self.edges))
j = 0
for i in range(0, self.edges):
Dz[j:j+self.m, i] = Z[j:j+self.m]
j+=self.m
return Dz
# Diagonal matrix spliting the z/||z|| elements of Z
def make_Dzt(self, Z):
if self.l == 2:
return np.eye(self.edges)
Zt = np.zeros(self.edges)
for i in range(0, self.edges):
Zt[i] = (la.norm(Z[(i*self.m):(i*self.m+self.m)]))**(self.l-2)
return np.diag(Zt)
# Construct distance error vector
def make_E(self, Z):
E = np.zeros(self.edges)
for i in range(0, self.edges):
E[i] = (la.norm(Z[(i*self.m):(i*self.m+self.m)]))**self.l \
- self.d[i]**self.l
return E
# Construct A matric for desired velocities
def make_Av(self):
A = np.zeros(self.B.shape)
for i in range(0, self.agents):
for j in range(0, self.edges):
if self.B[i,j] == 1:
A[i,j] = self.mu[j]
elif self.B[i,j] == -1:
A[i,j] = self.tilde_mu[j]
return A